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Summary

This study involves the development and testing of a new method for numerically modeling seis-
mic wavefields in arbitrarily heterogeneous media. The method is a generalization of the Fourier
pseudospectral method. In the standard Fourier method, a wavefiela ’s spatial dependence is ap-
proximated by a truncated series of harmonic functions and the expansion coefficients are integrated
in time using finite differencing. In the new method, the expansion set is supplemented by a finite
set of functions, called discontinuity functions, which are not infinitely differentiable with contin-
uous derivatives like the harmonic functions. With the discontinuity function set included, the
generalized Fourier method is capable of accurately representing high frequency wavefields in two-
or three-dimensional media with surfaces of discontinuity. The discontinuity functions synthesize
the discontinuous or rapidly varying portion of the wavefield’s spatial dependence, leaving a smooth,
continuous remainder for which the Fourier series representation is rapidly convergent. The method
is formally expressed as a weighted residuals statement of momentum conservation with boundary
conditions at discontinuities included. It is shown how a general coordinate transformation can be
used to incorporate surface topography and irregular material interfaces into models of strongly
heterogeneous earth structure and to improve the resolution of small-scale wavefield features. Us-
ing a particular set of discontinuity functions, a traction-free boundary is incorporated into the
generalized method. Comparisons of modelihg results with aﬁalytic and other numerical solutions
for both elastic and anelastic media with discontinuities shows an exceptional level of accuracy

without significantly increasing the computational requirements compared to the standard Fourier

method.




1 Introduction

Methods of full-wavefield simulation such as finite difference and finite element methods are appro-
priate for elastodynamic modeling in arbitrarily inhomogeneous, anelastic and anisotropic media,
but the use of wavefield simulation in seismology is limited to relatively low-frequency wave prop-
agation and to short propagation paths. Machine storage and computation time requirements
of wavefield methods render broad-band simulations unfeasible. As a r&u]t; most applications
presently are limited to two-dimensions, as three-dimensional modeling is impractical for bropgga—
tion distances greater than several wavelengths.

Storage considerations alone favor high-order or global ( pseudospectral ) methods over lower-
order finite difference or finite element methods, especially for 3-D simulations. For simulations
with a fixed bandwidth, a doubling of the wavefield sampling requires eight times as many nodes
in a 3-D grid. Similarly, for a fixed sampling of the wavefield, doubling the bandwidth of a 3-D .
simulation requirés eight times as many nodes. Because doubling the grid density used with a
typical numerical method also requires a reduction of the time step by a factor of two in order to
maintain the same low level of numerical dispersion, twice as many iterations are required with the
denser grid than with the finer grid to perform computations over a fixed interval in time. Therefore,
the overall computational effort of a 3-D method increases by roughly an order of magnitude with
a doubling of sampling or bandwidth. For a fixed level of numerical dispersion, however, the time
step size that can be used with low-order finite difference methods is somewhat larger than that
which can be used with the Fourier pseudospectral method ( Daudt et al. 1989 ). As a result, a
fourth-order in space, second-order in time ﬁxﬁte diﬁ'érence method is somewhat faster than the
Fourier pseudospectral method in terms of required computation time for 2-D simulations, but it
requires about twice the amount of storage for comparable accuracy ( Vidale 1990 ). We are not
aware of any published comparisons for 3-D coniputations, but we expect that the lower storage
requirements of the Fourier method, compared to the fourth-order finite difference method, will
lead to computation times that are rqughly equal to or shorter than those of the finite difference
method.

The focus of this study has been to increase the tractable bandwidth of seismic wavefield
simulations through the development of a more computationally efficient and accurate simulation

method. We use efficiency to refer to a measure of both a method’s storage requirements and




computation time for a given problem and chosen level of accuracy. A method’s efficiency for a
particular simulation is therefore roughly proportional to the total required number of discrete
points in space and time. Typically, accuracy is measured in terms of solution error, such as the
percentage error in phase velocity determined froni a simulation. In this study, particular emphasis
is placed on the accuracy of boundary condition approximations.

The treatment of boundary conditions is a very limiting aspect of pseudospectral methods for
seismic applications. With the Chebyshev polynomial-based pseudospectral method of Kosloff et
al. (1990 ), a fourth-order Runge-Kutta time-stepping scheme is required for stability ( Canuto et
al. 1988 ). Compared to a simple leap-frog time-stepping scheme, the fourth-order scheme results
in much more computation and storage. In addition, the time-step size is limited by the necessarily
small grid spacings in the vicinity of the interval endpoints of the set of Chebyshev polynomials
( Kosloff and Tal-Ezer 1993 ).

In the Fourier pseudospectral method, the spatial approximations of the field variables are
truncated Fourier series, and the spatial sampling of the method is optimal, for homogeneous media.
That is, the smallest wavelength computed with the Fourier series approximation corresponds to
the length of two grid point spacings. However, pseudospectral methods used for simulations in
heterogeneous media do not achieve accurate reflection and transmission at material interfaces
unless the sampling is greater than or equal to about four nodes per minimum wavelength ( Witte
1989 ). Such oversampling, and the corresponding reduction in computational efficiency, is required
because discontinuities in the media and wavefields are approximated with continuous, periodic
functions. Because the method’s basis functions are periodic, boundary conditions at grid edges
also must be periodic. On the other hand, if the boundary conditions of a given modeling problem
are different at opposite edges of the problem space, the field variables will, in general, have different
values at one edge than at the other edge. If such a problem is modeled using the Fourier method,
this mismatch behaves like a discontinuity. It causes rapid oscillations in the Fourier approximation
due to poor convergence. . .

The central contribution of this work is to incorporate into the Fourier method boundary condi-
tions at material discontinuities. This is achieved by combining the trigonometric functions of the
Fourier method with additional functions which are not, like the trigonometric functions, infinitely
differentiable with continuous derivatives. The additional functions, referred to as discontinuity

functions, approximate the spatial discontinuities of the field variables, leaving a continuous re-




mainder to be synthesized by the trigonometric functions. We refer to the resulting method as the
generalized Fourier method ( GFM ).

Conside.r such a scheme to simulate wavefields in a realistic model of earth structure which con-
tains free surface topography, dipping layer;s, and random variations in material properties. It would
be impossible to account for all material discontinuities in such a model by explicitly incorporating
boundary conditions at all interfaces. However, most discontinuities in the Earth can be approxi-
mated as continuous but rapid changes in material properties with position. Using the generalized
Fourier method, these structural features can be treated with the ( continuous ) trigonometric
functions. Other structural features may be sufficiently abrupt, for the wavelengths of interest,
that they must be treated as actual discontinuities. Figure 1 schematically illustrates an earth
structure with both continuous and discontinuous variations in material properties. Discontinuities

are indicated by thin black lines, and continuous variations are indicated by thicker gray lines.

Using the generalized Fourier method for simulations in the structure of Figure 1 requires the use '

of discontinuity functions for those interfaces that are treated as actual discontinuities ( as opposed
to being approximated with continuous functions ) and the use of a coordinate transformation to
map the space with irregular interfaces, the physical space, into the Cartesian computational space.
In the nth domain of the multi-domain computational space, the sets of trigonometric functions of
the Fourier method are denoted e and e"g, in the z; and z3 coordinate directions, respectively.
The periodicity of the Fourier method is eliminated within the nth domain by using the sets of dis-
continuity functions d) and d7 . The discontinuity functions account for discontinuities at the
" interfaces connecting neighboring domains and at the bounding surfaces of the entire problem space.
They effectively decouple the coordinate endpoints of each domain, since the boundary conditions
on the surfaces of each domain are no longer periodic when the discontinuity functions are included.
The resulting independent problem spaces are coupled together with boundary conditions, while
the material properties within each domain remain spatially continuous.

In some cases it may be advantageous, in view of the oversampling required of the Fourier
method for accurate representations of heterogeneous media, to model only the most abrupt changes
in material properties with position, treating all of them as surfaces of discontinuity between do-
mains of very smooth and continuous variations in material properties. In such cases, boundary
conditions would be applied explicitly on all interfaces, and the grid—point—per—minimum—wavelength

sampling of the resulting multi-domain method would be optimal: It would require a sampling of




only two nodes per minimum wavelength.

In this study, we introduce discontinuity functions in only the vertical coordinate direction, as
illustrated in Figure 2. This is sufficient for applying a traction-free boundary condition at the
top of the model and a radiation condition at the base of the model. The computational space
remains periodic in the horizontal coordinates. We present results of wavefield modeling only for
single-domain problems, but the analytical formulation that is presented accounts for multi-domain
methods as well.

In section 2, the elastodynamic problem is posed in terms of an integral statement of momentum
conservation for a volume of material containing surfaces of discontinuity. Then an approximation
to the governing equations is presented in terms of the method of weighted residuals. In section
3, the pseudospectral approximation of field variables and their derivatives is introduced, using
an arbitrary set of global basis functions. The approximation is applied to the weighted residuals
statement of momentum conservation to obtain a generg.l formulation of pseudospectral methods
for elastodynamics. Choosing trigonometric basis functions, we obtain the Fourier pseudospectral
method and demonstrate the method’s inherent periodicity. In section 4, a generalization of the
Fourier method which handles discontinuities is derived by choosing a particular set of discontinuity
functions to supplement the trigonometric basis set of the standard Fourier method. The derivation
is presented in Cartesian coordinates and then extended to a curvilinear system. In section 5, the
accuracy of the generalized Fourier method is tested for wave propagation problems involving a

traction-free boundary condition.

2 Analytical Formulation

2.1 Equations of Momentum Conservation

The governing equations for the wavefields in a continuum are obtained from an integral statement
of momentum conservation with surfaces of discontinuity present. In the following derivation,
Greek subscripts denote spatial coordinate directions, and a comma before a subscript indicates a
derivative with réspect to the coordinate whose label follows the comma. The Einstein summation
convention is assumed unless otherwise indicated.

Consider the Lagrangian description of momentum conservation in a volume V bounded by a

surface of discontinuity S. Let the bounding surface S have an outward normal unit vector n.




Then a jump in a quantity Q across S is defined as [Q]s = Q@ — Q™ where Q* and Q™ are the
values of Q immediately near S on the positive and negative sides of n, respectively. ( From now
on we neglect the subscript S on double brackets, understanding that all jump conditions are taken
across surfaces of discontinuity. ) When the boundary S moves with the particle velocities, then

the equation of momentum conservation for the volume V bounded by S is

G —togg — dV-ft dS = 0 | : 2.1.1
/V ovns) [plie —tapp — fal ' S[ apng] (2.1.1)

( Archambeau and Minster, 1978 ) where fi, and f, are the components of particle acceleration
and body force density, respectively, in the a coordinate direction and t,g is the stress tensor. The
symbols © and N denote the set theoretic difference and intersection, respectively. ( In the follow-
ing, V-5 is used to abbreviate VO(V n S). I) Since V is arbitrary and therefore could be chosen to
exclude S, the integrals in (2.1.1) are zero separately. While the first integral provides the differen-
tial equation of momentum equation in the continuum, the second integral provides the boundary -
_conditions: Across S the traction jump condition is [t,sng] = 0. From an analogous treatment of
mass conservation, the jump condition for the particle velocity is [tia ng] = 0. Consequently, the

relevant boundary conditions and equations of motion for the medium are the following:

pafua — tagpg—fa=0
[tasngl = O

fiang] = 0 (2.1.2)

A comma before a subscript indicates a derivative with respect to the coordinate whose label follows
the comma. Here it should be pointed out that the boundary conditions apply at every material
discontinuity, so that the surface S represents both internal and external boundaries. To be explicit,

S=510S5:6...865N

where Si denotes the external boundaries of the volume Vi (k = 1,...,N) in which the material
properties are continuous. Therefore, S1,S,...,SN account for internal boundaries as well as the
external boundary of the medium, so that S is the set of all surfaces of discontinuity. When internal
boundaries of material discontinuity occur, the equations of motion, expressed by the first equation
in (2.1.2), apply in each zone in which the medium properties are continuous, while the boundary

conditions in (2.1.2) apply at the boundaries of each zone of continuity to connect the wavefields




across medium discontinuities separating the zones Vi. That is,

[tapﬂph = [tapnghh = ... =0

and similarly for [it, ng]. In a solid medium, it is usual to consider all internal boundaries to be
“welded”, that is, to be non-slip boundaries such that not only is the normal component of the
particle velocity continuous, but the tangential components are as well. In this case, for solid-
solid interface boundaries, the final boundary condition in (2.1.2) is replaced b.y the displacement

continuity condition
[tc] =0

with the other conditions in (2.1.2) unmodified. For solid-fluid or fluid-fluid boundaries, slip ( i.e.
discontinuities of tangential velocities ) can of course occur, so in these cases the entire set in (2.1.2)

applies as is.

2.2 Weighted Residuals Approximation

Approximate solutions to the equations of motion and boundary conditions are obtained by express-
ing the spatial dependence of the displacement components uq(x,t) and the material parameters in
terms of finite expansions with time-dependent expansion coefficients. The displacement coefficients
are obtained at discrete instants in time by minimizing approximation error, using the method of
weighted residuals. With the spatial dependence of the field variables in (2.1.2) approximated by a
finite expansion, the momentum of the approximate system is not the same as the momentum of the '
continuous system. In other words, the lack of completeness in the expansions produces an error,
or residual, in momentum. Therefore, the expansion coefficients of the field variables are chosen to
satisfy momentum in a sufficiently accurate approximate sense, by making the momentum reéidua.l
orthogonal to a specified set of weighting functions. Such an approximation method is termed a
method of weighted residuals ( MWR ) ( Finlayson 1972 ). o
For the weighted residuals formulation in this section, we introduce a general set of basis func-
tions that could correspond to the set in any numerical method of MWR type. Finite difference
methods are equivalent to weighted residuals formulations whose basis functions are nonzero only
at a set of collocation points. Finite element methods are equivalent to weighted residuals formu-
lations whose basis functions are typically piecewise-continuous bolynomja.ls. With finite difference
and finite element methodé, the expansion coefficients are typically values of nodal displacement.
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With pseudospectral methods, the basis functions are spatially global, and the coefficients are
wave vector coefficients. However, the pseudospectral expansion coefficients are related to nodal
displacement values, as shown in section 3.

Let b(x, k) denote a general basis function for the particle displacement expansion in a 3-D or-
thogonal coordinate system with directional unit vectors ia,  =1,2,3 aloﬁg coordinate axes. The
vector k = k,i, labels the basis functions in terms of the set of indices ko = (k1, k2, k3). Although
we will use Cartesian coordinates for particular choices of basis functions, the weighted residuals
method is applicable in any coordinate system. Each component of displacement is approximated

as
ux,8) = 3 i, (k, 1) b(x,K) (2.2.1)
k

where the superscript on u.,@(x, t) distinguishes this field from the exact field u,(x,t). All quantities
that are approximated by a finite expansion will be labeled with such a superscript, and the letter
used in the superscript will identify the basis functions used for the expansion. With this convention,
we will be able to distinguish between the expansion coefficients of different basis functions when

using more than one type of basis set.

Since numerical methods, in general, can be formulated as series of matrix operations, it is
useful to adopt matrix notation for our formulation. Let lowercase boldface type denote column
vectors and uppercase boldface type denote matrices with components in the space of the vector

k. We denote the displacement approximation of equation (2.2.1) as
L= b (2.2.2)

where the superscript.r denotes a matrix transpose. The column vectors have a component for each
possible value of the discrete vector k, and each component of k, in general, has different limits.
For the following analysis we consider a linear constitutive relation tog = Capys €45 with strain
€5 = 312- (q,6 + ts). In general, cag,s can be an integral operator incorporating relaxation and
viscous terms as well as elastic moduli. We denote the strain approximation obtained by using the

finite expansion of (2.2.1) with the superscript (b):
T T ’ ,
es = 5 (8 bs+ s by ) (2:2.3)

where 1, is a ( time-dependent ) expansion coefficient. The elastic modulus tensor c,g.5(x) and

the mass density p(x), which fundamentally give rise to the complications in the wavefield, are
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likewise expanded using a finite basis set b’ and expressed as
T T
c(g)ﬂ»,,\ = &apya b’ and p(b’)= p b (2.2.4)

The material basis set b’ can, in general, be different from the set b used for the displacement and
strain fields. However, foxj efficient evaluation of the equations of the weighted residuals formulation,
it is necessary that the material basis set b’ be orthogonal to the displacement basis set b. This
necessitates choosing the set b’ to be either the complete set b or a subset of b. Both cases will be

discussed below. The corresponding stress approximation is therefore

t?ﬂ = 6(23975 695 (2.2.5)

The displacement expansion of (2.2.1) and the stress tensor expansion of (2.2.5) are used in
the equations of motion and Bounda.ry conditions of (2.1.3). In general, the body force density f,
can also be approximated with a corresponding expansion, although for relatively simple sources
the body force density can be applied exactly. For generality at this point, however, we assume an ‘

expansion for the body force density of the form

- | (2.2.6)

2.3 Galerkin’s Method

The time-dependent expansion coefficients i, are determined by minimizing the solution error
within the volume and on the ( bounding ) surface of the problem space. Therefore, the MWR
formulation incorporates a residual of both the solution to the differential equations of momentum
conservation and the boundary conditions. Of course the relative accuracy of the numerical solution
within the volume V to the accuracy on the surface S depends not only on the basis functions,
but also on the weight functions used in the volume and surface norms. In general, the weighting
functions of the weighted residuals method must be chosen so that the system of algebraic equations
that results can be evaluated efficiently for the expansion coefficients. We adopt the approximation
referred to as Galerkin’s method by choosing the set of weighting functions to be the same as the
field variable expansion set. In this case, the error is made orthogonal to the expansion set. For

the set of orthogonal basis functions b, the Galerkin weighted residuals statement of momentum

conservation is

[ b [p‘”a%uf,"’— 185 f@] v =0
V-5




}{S b[t8ns1dS =0 and }{ b [uf]ds = 0 (2.3.1)
S

foralla = 1,2,3. In cases involving fluid boundaries, the integrand term [uq] in the final boundary
constraint integral is replaced by [tian4 ], s0 that only the normal particle velocity component need
be continuous.

In (2.3.1) we have used “condensed” representations, in that these relations a.pplf piecewise in
a discontinuous material volume. That is, the global representation in explicit i’orm is

/V [ (b’)a2u.,, —taﬂ,ﬂ fa ] dv = / b* [ pma?uf—t,%'ﬁ- ff,’)] dv

S1 Va—-8$3

=,,,=/ b'[p""’a?uf? t8 5 - fa]dV-O

VN - SN
o, ® [ rer,® R
j{ b[ta,gnp]dS—}{ b[tapnp]dS—...—f b [t np1ds = 0 (232)
5y S2 SN
and
s b*[u®]ds = fb'[u Jds = .. —f b [u®]ds = o

where Sj, Sz, etc. are defined to mean the surfaces bounding the sub-regions Vj, V2, etc. within
which the material properties are continuous. Therefore, relations like those in (2.3.1) are to be
interpreted as applying in any of the sub-regions Vi. The boundary conditions serve to connect

fields between the regions since, for example,

&ns1 = [tahish) - t8(50)] np =0 ~ (233)

constrains the traction fields in adjacent sub-regions to be equal at their common boundary.

If the medium can be represented adequately by a basis set that is continuous throughout
the entire model volume, then there are no internal discontinuities in the material properties. In
this case, traction, displacement and velocity fields are also continuous and the boundary condition
integrals in (2.3.1) and (2.3.2) for internal boundaries are absent ( they are automatically satisfied ).
Then the explicit form of (2.3.1) can be expressed as . '

/ b [ 2 (b)—to(?g'p—fg] vV =0
- So

f b t8nglds =0 ; f b [ud]ds = 0 o (234)
So So
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where S denotes ( only ) the external boundary of the medium considered. Clearly the equations
in (2.3.4) have the same form as in (2.3.1). That is, if we interpret S in (2.3.1) to be the external
boundary of a region in which the material properties can be represented by a continuous basis
set, then the equations of (2.3.1) are equivalent to those in (2.3.4). In general, however, the
set in (2.3.1) represents the set (2.3.2), which allows for the existence of many zones of continuous
material variations separated by discontinuities in material properties and, therefore, discontinuities
in wavefield variables. The equations in (2.3.2) show how the separate wave fields given by (2.3.4)
for continuous domains must be connected through boundary conditions at the domain boundaries.
Thus, the equations in (2.3.2) describe the multi-domain equation set while the equations in (2.3.4)
describe a single continuous domain set, while the set (2.3.1), with the conventions adopted for S
and V, represents either.

The situation for most geophysical applications is that material property variations in the con-
tinuum approximation are well represented by continuous variations in parameter values. Therefore, -
a self consistent approximation for wave propagation in composite solid and fluid media, like that
composing planetary bodies, are the equations in (2.3.4), provided a basis set is used that can accu-
rately represent rapid changes in material properties and field variables over rather small distance
intervals. In order to model very rapid spatial variations in material properties which cannot easily
be represented by a convenient finite set of basis functions, it is important to include material
discontinuities in the medium description. We therefore treat the general case here, given in (2.3.1)
and (2.3.2), to obtain a formulation that can be used in a multi-domain representation. However,
since (2.3.1) and (2.3.4) are essentially interchangeble in terms of formalism, we are able to simu-
lataneously develop a formalism that is appropriate for the single domain case of (2.3.4). Since, as
we will demonstrate, the set in (2.3.4) is sufficient for modeling many problems of interest, in this

study we concentrate on examples involving the use of the set in (2.3.4).

2.4 The Weak Form of Galerkin’s Method

A significant advantage of using Galerkin’s method in a pseudospectral approximation for elastody-
namics is that it can be formulated so that the resulting algebraic equations are expressed in terms
of self-adjoint, i.e. normal, matrices. Normal matrices have a complete, orthogonal set of eigenvec-
tors, and the well-known von Neumann stability analysis can be applied to numerical methods with

normal matrices. Most importantly, the computational requirements for time-stepping an initial
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value problem with a method whose algebraic equations can be put in a normal matrix form typi-
cally are less than for a method with a non-normal matrix ( Trefethen 1988; Richtmyer and Morton
1967, Chapter 4 ). In particular, leapfrog time-stepping can be used for numerical methods with
normal matrices ( Orrey 1995 ), whereas methods with non-normal matrices require time-stepping
schemes which stably iterate matrix equations with complex eigenvalues, and particular schemes
are stable over particular regions of a complex space of eigenvalues. Canuto et al. (1988 ) describe
many time-stepping schemes for pseudospectral methods and indicate their regions of stability.

In order to express the equations of (2.3.1) as an algebraic system of equations with normal
matrices, the so-called weak Galerkin formulation is obtained by applying Gauss’ theorem to the
second term in the volume integral:

/ b t8sdv = )[ b* 18 ngds - / bt av (2.4.1)
v-S5 st v-S§

where S+ is used to denote the surface approached from inside V. Now the first integral expression

in (2.3.1) can be written as

/ [b‘ PV 2@ + / bt - / b ff.”] v = }{ b* tagng dS (2.4.2)
V-5 |4 \ 4 st

Equation (2.4.2) and the boundary conditions

f b” tapng ds =f. b* taﬂnpds

st S

f b uPds = f b*ulds (2.43)
st S

constitute integral equations. to be used in the numerical _approxima.tions. In this approach, the
first boundary relation in (2.4.3) is used to connect the fields acroés boundaries S since it may be
used in (2.4.2) to link the tractions on S* to those in a neighboring domain, expréssed onS~.

In the case of a single domain, where (2.3.4) applies and material propérties are represented by
a continuous basis function expansion, the formalism simplifies because only the external bounda.ry‘
So appears. In this case the set (2.4.2) plus (2.4.3) reduces to

/ [b‘ P62u® + b7t Y - b f?] dv = f b* ing dS
V - So So

§ b elmgds = § b ilngas | (2.4.4)
S5 So
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where f?ﬂ are the ( assumed specified ) applied stresses on the surface Sp. If the external boundary
is a free surface, then the displacements are unconstrained at this surface and the tractions on So
must vanish. In this case the governing equations are
/ [b‘ Mo2u® + btY - b ff,”’] dv =0
V - So
f b*t&nsdS = 0 ' (24.5)
Ss
It is important to note that the first equation in either (2.4.4) or (2.4.5) is true only if the boundary
integral involving the tractions over S is satisfied explicitly by the numerical approximation. That
is, satisfying the first equation is not sufficient to result in a field representation that satisfies the
boundary condition on Sp, so the boundary condition must be applied explicitly to the tractions.
The effect of energy sources can be represented in the field equations in a number of possible
ways, all of which must of course be equivalent. A simple and direct way is to use the external
body force density f, to represent both the actual external forces, in particular gravity in the case
of seismic and acoustic wavefields, and the applied sources, such as an explosion or an earthquake.
In this case the body force density is approximated with the basis set b, and the volume integral
over the external forces may be written in two parts:

/ b rav = / b g@dv + / b*sq dV ‘ (2.4.6)
So - So V - So

Here 99 represents a body force field, like gravity, and 39 represents the ( spatially confined )

forces on the medium produced by. the source. Because the force fields g, and s, are represented

as expansions ( of the form in (2.2.6) ) with the global basis set b, the field representations g?

and s,(? have value over the entire domain V — S. However, s, can typically be made zero outside

some relatively small source volume Vg. Therefore, rather than expanding s, in the basis set b
®

to generate the series representation s, it is often simpler to use the known ( specified ) source

function s, directly in the integral. In this case, with s, having value only inside the source volume

Vs, we have
/ b's%v = / b*s.dV ' (2.4.7)
V-5 Vs A

A similar simplification can be used for the field g, and for the applied surface tractions tapns-
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In terms of these source fields, the equations in (2.4.4) can be written as

/ [b‘ P 62u® + b3t - b‘ga] v = f b*Pngds + / b* sadV
V- S S5 Vs

j[ b* t%nsds = j[ b*T.ans dS - (248
S5 5o |
Of course the form corresponding to (2.4.5), where no surface stresses are applied on the external
boundary Sy, is obtained by simply setting .8 = 0. |
In the multi-domain case, where V is partitioned into sub-regions V; with surfaces S,
k=1,2,...,N, the relations take the form

/ [b‘ P 62u® + b3yt 8 - b*g,,] v = j{ b* #ngdS + / b® sadV
Vi — S sy Vi

f[ b G ns1ds =0 ; f b [u®]ds = 0 (24.9)
Sk . Sk ‘

For the domains intersecting a free surface of the medium, the displacement constraint is relaxed
and the traction condition at such a boundary requires the traction in the material to equal any

applied tractions, as in (2.4.8).

2.5 Incorporating Discontinuities

The essential generalization of the present development involves the choice of a form of the basis
functions that will satisfy all of the relations in either (2.4.8) or (2.4.9). In particular, we consider a
basis set b consisting of both the trigonometric basis set of the Fourier method and an additional set
of basis functions which are not infinitely differentiable with continuous derivatives. The additional
set is used to satisfy the boundary condition constraints on external and/or internal surfaces of
material discontinuity in (2.4.8) or (2.4.9) while the remaining continuous set is used to satisfy the
volume integral relations involving the equations of motion. Because of their construction and use
( to satisfy conservation conditions on surfaces of material discontinuity ) the additional functions
are referred to as discontinuity functions. In effect, the set of discontinutiy functions provides
the extra degrees of freedom required to explicitly satisfy the boundary conditions on the field _
variables. By construction, the set of discontinuity functions is chosen to be orthogonal to the set

of trigonometric functions over the interval of each spatial coordinate, while each member of the
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discontinuity set is also required to be orthogonal to all other members of the set. ( This orthogonal
construction is necessary to maintain the efficiency of the computational scheme developed below. )

The trigonometric functions of the Fourier method are defined in terms of a set of wave vectors
k = k_i,, which are discretized over each coordinate length X, in a 3-D system of Cartesian

coordinates as

ko= 2 lasl g o Maml 0103 : (25.1)

We have adopted indice ranges associated with odd radix Fast Fourier Transforms ( FFTs ) ( Tem-
perton 1983 ) since these transforms avoid the Nyquist frequency and the associated Nyquist errors
that are produced when derivatives are computed using a pseudospectral approximation ( Canuto
et al. 1988; Orrey 1995 ). The tilde underline of k, serves to indicate that the spatial dependence
of k, is an inverse lehgth, and therefore the index k, corresponds to a discrete wave number index.
From now on, any index with a tilde underline will correspond to a discrete wave number index. .
In terms of the discrete wave number k, for the z4 coordinate, we define a set of 1-D Fourier basis

functions with the compact notation

i!saza} (no sum on a ) (2.5.2)

e(a) = {e K
where { }, denotes the set of functions for all values of k.. A corresponding set of coefficients for

an expansion of the displacement component u., in the basis functions of (2.5.2) is defined as

®59 = {“”ﬁ‘i’(is‘.)} (2.5.3)

~cr

Then the 1-D Fourier expansion along the coordinate z, is

(a)ﬁS;)T z @y (e)(k e e o (no sumon a ) _ (2.5.4)

For expansions of the field variables in terms of both trigonometric and discontinuity functions,
we define di; to be a set of discontinuity functions with a spatial dependence in the & direction.

Then, for the general case of discontinuity functions used in all coordinates directions, the expansion

of the displacement component u, is
T (5) (d)
o = H (Paf7eq dg ) (2.5.5)

where (6)11(.7) and @ﬁg‘? are sets of ( time-dependent ) expansion coefficients for the basis functions

in the & direction. The use of the construction in (2.5.5) can be quite flexible, in that the field
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quantities in a 3-D medium can be represented by using one-dimensional expansions with different
basis sets in the different coordinate directions. Let the expansion of (2.5.5) be arranged as a
triple product of 1-D Fourier expansions plus a supplementary expansion that contains all of the
remaining combinations of @fng) Te @ and @ﬁ(ff Td@ . We denote the supplementary function set

as s, which is in general a mixed set of Fourier and discontinuity functions. Then (2.5.5) becomes -
P = a9 +a9s : (2.5.6)
in terms of the set of 3-D Fourier basis functions

e = {eikx}k , (2.5.7)

Eq. (2.5.6) can be conveniently expressed in the general form of (2.2.2) by partitioning the vectors

i, and b into Fourier and supplementary contributions:

ﬁ(e) e .
&L= 4 ; b= (2.5.8)
108 8

In a similar manner, the mass density and rheological tensor can be expanded as
3
NCES ~dT
=11 (@ 59 Tem +© 5 d,@) :
s=1
3 .
NCR “dT
ng.h\ = H ((ﬂcg)g.,,\ e@ + (Qc(gg,,,\ d’@) (2.5.9)
é=1
in terms of the Fourier sets s and the material discontinuity sets dig for each coordinate zj.
Arranging these expansions as a triple product of 1-D Fourier expansions plus a supplementary

expansion in terms of a basis set 8’ which contains all remaining combinations of the basis functions,

we have

p(b’) = b(‘)Te + p(”)Tsl = prl .

®) A@T g

(8T T
Caffyh = Capfyr € + Capya g = caﬂ7Abl (2'5'10)

where, as discussed in the context of (2.2.4), the material basis set

b = ( € ) . (2.5.11)
s’ .
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can be different than the set b used for the field variables. The discontinuity functions provide
an accurate representation of material models whose properties are, in general, different at one
endpoint of each coordinate interval than at the other endpoint. This is the case for a single-
domain problem, in which the material properties are continuous throughout the problem volume.
For a multi-domain problem described by (2.4.9), the representations in (2.5.9) are used in each
domain. Discontinuities in material properties exist across the boundaries between domains and
the material properties are continuous within each domain.

A simpler numerical algorithm results from the particular choice d'(,,) = O ( where O

denotes the null set ) for all a, so that the material properties are represented as

€ T e N
p()= pe ; cf,)p.,,\ = Copyr € (2.5.12)

This provides a good approximation to media whose material properties are the same at both
endpoints of each coordinate interval and are continuous throughout the problem volume. For
single-domain problems, it is still necessa.ry to represent the field variables with (2.5.5), which
includes discontinuity functions, if the boundary surface integral in (2.4.8) must be satisfied. For
multi-domain problems, discontinuity functions in the field variable representations are necessa.ry to
couple the separate domains with boundary conditions. In this study, we provide simulation results
of a single-domain method that incorporates the trigonometric basis set expansions of (2.5.12), but
we include the formalism for the more general method that uses the expansions of (2.5.9).

With the basis set expansions given by (2.5.5) and (2.5.9), we use the following matrix repre-

sentation of the governing equations of (2.4.8) for momentum conservation in a single domain:

M2, + Koylly = 8o +8a+ta (2.5.13)
He lly = da (2.5.14)

with the quantities

M = / b (Ab)bav (2.5.15)
V - So
Koy = / b7 (&pnab) by dV (2.5.16)
V - So
8o = b*ga dV (2.5.17)
V -So
5, = / b*se dV (2.5.18)
Vs

17




te = f b‘zapngds (2.5.19)
So

and
Ho= § (¢56sab') bngds (2.5.20)
So )

The mass matrix M and stiffness matrix K, are evaluated using the orthogenality of the basis
functions, while the applied body force terms g, and 8, and the surface force term t, are evaluated
either analytically, for simple sources, or by specifying nodal source values and using Gaussian
quadrature. The generalization to the multi-domain case of eq. (2.4.9) is straightforward, since
the single-domain results of (2.5.13) with the quantities in (2.5.15)-(2.5.19) apply to each of the
multiple domains ( indexed by k = 0,1,... ), while the boundary condition (2.5.14) is modified to

the form

M, R, = ML G, (2.5.21)

with the superscript k indicating evaluation on the kth interface between the domains k and k£ + 1.

3 The Pseudospectral Method for Numerical Approximation

The governing equations (2.5.13) and (2.5.14) are to be solved for the discrete wave number expan-
sion coefficients of the particle displacement field. The only approximation made to obtain (2.5.13)
and (2.5.14) was to approximate field variables with truﬁcated discrete wave number expansions.
It is now necessary, in order to obtain a numerical solution, to discretize the spatial domain of the
problem as well as the wave number domain. This amounts to evaluating the integrals of (2.5.15)-
(2.5.20) using Gaussian quadrature. The resulting method is referred to as a pseudospectral method

( Orszag 1971 ).

3.1 Spatial Discretization

Consider first the spatial discretization of the field variables. We have adopted wave number
expansions of the form in (2.2.1), in which a different basis set can be used in each coordinate
direction; Therefore, let the displacement field expansion of (2.2.1) be expressed as

3 :
H E H (a)uq b(a) (31.1)

a=1
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where b is a column vector of basis functions for the a-direction expansion. Now, the basis set

in each coordinate direction is defined to be orthonormal as

Xa
/; bi) (Tas ka) by (ZTas la) Wy (Ta) dTa = &k, (3.1.2)

for & = 1,2,3 and any two wavenumbers k, and I, of the set in the a-direction, where the star
indicates complex conjugate and u) (o) is the weight function of the orthogonality. Using this
orthogonality relation, the expansion coefficients in (3.1.1) are obtained as

@ _ (%@ 0 .
Uy (kayt) = A Uy (Zas t) by (Tas k) W) (Ta) dZa (3.1.3)

However, since (a)u.(? (za,t) is an expansion in terms of a finite set ( by, ), the integral in (3.1.3)
is equal to the Gaussian quadrature sum obtained by discretizing the spatial domain into a set
of collocation points. With a pseudospectral approximation, the collocation points are generally
chosen as the roots of the first neglected basis function in the ( truncated ) expansion ( Boyd 1989,
p. 125 ). However, it is usually necessary to include the end points of the interval in the set of
collocation points, in which case Gauss-Lobatto quadrature is typically used ( Canuto et al. 1988 ).

In general, the position vector x is discretized into the set of grid points
ja = Jalal(je) ;3 0ZLja < N, a=123 . (3.1.4)

for collocation. From now on, any index with a tilde overline will correspond to the index of
a discrete spatial position. The grid point spacing A,(j.) is, in general, a function of position
and direction. The total number of grid points typically equals the total number of discrete wave
numbers in the expansion of (2.2.2). Values of the displacement approximation u.(.? (x,t) at the grid
points are represented by the vector u,, with individual components

,1) = o2 ’ (3.1.5)
uy (3, 1) = uy/ (x,1) 1.

X= 50 ia
and the discretized basis function b(x, k) becomes a matrix operator B with individual components
B(j, k) = b(x, k)| (3.1.6)
X = jala .

The collocation matrix operator B produces a vector of collocation values from a vector of wave

number coefficients:

u, =B, (3.1.7)
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A unique inverse B! is defined so that the Gaussian quadrature relation is

i, =B 'u, (3.L8)

The continuous field u‘(? can therefore be expressed as the interpolation of nodal quantities u,:

W= (B7w,) D » | | (3.1.9)

In order to incorporate spatial discretization into the momentum conservation relations (2.5.13)
and (2.5.14), the integrals of (2.5.15)-(2.5.20) can be evaluated with continuous quantities using the
orthogonality relation (3.1.2), or all quantities can be discretized and the integrals can be evaluated
using Gaussian quadrature. In the latter case, the expansion coefficients are expressed in terms of
collocation values as in (3.1.8). Because all expansions in (2.5.15)-(2.5.20) are finite, the results of

" the continuous and discrete treatments of the integrals are equivalent.

In the following subsection, the standard Fourier pseudospectral method is obtained by dis-
cretizing the momentum conservation relations and using trigonometric basis functions, while in
section 4 the standard method is generalized to the case of both trigonometic and discontinuity
basis functions. For both methods, it is necessary to define descretized representations of material
strain and stress. In order to do so, we restrict the general basis set b to be any set for which
derivatives of the basis functions in the set also belong to that set. This class of functions is quite
broad since it includes all polynomial-based functions. For this class of functions, differentiation

with respect to the coordinate z, is expressed in terms of a matrix operator Dj:
T
b =D, b (3.1.10)

Displacement derivatives are denoted

wyy = b (3.1.11)
where, using (2.2.2) and (3.1.10), the coefficients are
(3.1.12)

Uy = Daty
Combining the previous notation, the collocation derivative of the displacement component 1 is

w, =Bi, = BDyB u, (3.1.13)
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and the procedure for obtaining collocation derivatives of displacement from nodal displacement

values is given in terms of matrix operations. Collocation strains follow as

en= 3 B(DAB'u,+D; B 'w) (3.1.14)

In order to obtain collocation derivatives of the stress tensor, we define a diagonal matrix Cag,x

whose components are values of the elastic tensor at the grid points of (3.1.4):

Caﬂ‘y)(j’j) = caﬁ‘yz\(j) (3115)
Then, using the elastic tensor symmetry cagya = Cogay, the collocation stress is

—1
tag = Capya BDAB "u, (3.1.16)

To obtain the collocation derivative of stress, wave number coefficients are obtained by a forward
transform, the coefficients are multiplied by the differentiation matrix, and the collocation derivative .

of stress is obtained by an inverse transform:
tag s = BDﬂEaﬂ = BDmeICap‘,,\ BD, B"1 u, (3.1.17)
The discretized form of the momentum conservation relations are obtained after multiplying

(2.5.13) and (2.5.14) from the left with the collocation matrix operator B. In terms of the matrices

M = BMB

Ko, = BK.,B"
H,, = BH,B" (3.1.18)

egs. (2.5.13) and (2.5.14) become

M 62u, + Kayuy = go + 54 + ta (3.1.19)
and
Hoyu, = tq (3.1.20)

where go = Bfa, S« = B3; and tq = Bt,. For particular choices of the basis functions b
and b’, (3.1.19) and (3.1.20) provide governing equations for a numerical solution to the discrete

displacement field u,.
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3.2 The Fourier Pseudospectral Method

The Fourier pseudospectral method is obtained by using the trigonometric basis functions of equa-
tion (2.5.7) in the governing equations (3.1.19) and (3.1.20). The resulting method’s efficiency is
due to the fact that the FFT can be used when evaluating the various expansion coefficients in
equation (3.1.19). We show below that the boundary condition equation (3.1.20) vanishes because
of the spatial periodicity of the trigonometric basis set. This is a fundamental drawback of the
Fourier method for seismic applications.

Using the trigonometric basis (2.5.7) for all previous expansions, we have
b=Db =e (3.2.1)
and the Fourier expansion of the displacement field u,
T :
w, =1, e (3.2.2)

For trigonometric collocation, the spatial domain is discretized into N, collocation points evenly
spaced by a distance Az, along the a coordinate direction, and the coordinate lengths are X, =
NoAzs ( no sum on o ). With discrete spatial positions represented as

Ja = JaAze 0< ja < No—-1, a=1,2,3 _ (3.2.3)
the discretization of (3.2.2) is
. ikj
u() = ) dy(k)e ‘ (3-24)
k

where we have suppressed the explicit time dependence of both the spatial domain and wave

number domain representations of displacement. The collocation matrix operator for trigonometric
ikJ

functions is denoted by E, which has individual components E(j, k) = e ~, so that the compact

relations between nodal displacement values and wave number coefficients are

w=E% ; &,=FEuy (3.2.5)
E ' is the inverse collocation operator for trigonometric functions:
E!= Llg | (3.2.6)

VN
where Vy = Hi=0 N,. Note that the inverse operator E’ corresponds to what is typically called
the direct Fourier transform, while the direct operator E corresponds to the typical inverse Fourier

transform.
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The derivative operator Dy for the Fourier basis (2.5.7) is a diagonal matrix D&e) with compo-

nents
DYk, x) = ik, (3.2.7)
and the collocation derivative u, ) is obtained as
© -1
u,» = EDYE 'u, (3.2.8)

Using the trigonometric basis set e, the inertial term in the differential equation of momentum

conservation (2.5.13) becomes
e 20 -1
Mo, = E Métu, (3.2.9)

with a diagonal mass matrix M whose components are

M(m,m) = Vx p(m) (3.2.10)
in terms of a collocation representation of density, p = Ep, and the problem volume Vx =
3
a=1Xa-

The restoring force term in (2.5.13) becomes
Koy, = ~VxDYE'Copn EDLE 'y, (3.2.11)

by using a collocation representation of the elastic modulus tensor, Cogyx = E€apya-

From (2.5.17), (2.5.18) and (2.5.19), the external forces are

Ba = / e’gadV (3.2.12)
V — So

5, = / 5o dV | (3.2.13)
Vs

te = f e tagngdS (3.2.14)
So

These integra.ls are performed either analytically, for simple sources, or the source functions are
éxpa.nded in Fourier series and the integrals are evaluated using Gaussian quadrature.
Combining the expressions from (3.2.9), (3.2.11), and (3.2.12)-(3.2.14), the differential equation

for momentum conservation (2.5.13) becomes

M 6%u, — VXEDSE 'Copn EDYE 0, = go+8a+ta (3.2.15)
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where go = Eg,, 8, = E8, and t, = Et, are the collocation representations for the specified ex-
ternal forces on the system, consisting of body forces, internal volume sources and applied tractions
on the boundary of the medium, respectively.

Because the collocation mass matrix is diagonal, its inverse is trivially computed. Then (3.2.15)

is used to obtain a time history of nodal displacements by solving
SPua=M" (VxE DY E" Copn EDYE u, + o + 80+ ta ) - (3.2.16)

with a finite difference time-integration scheme. Alternatively, nodal velocities v, can be stored in

addition to the nodal stress values
tas = Caprn EDYE u, | (3.2.17)

Then, instead of integrating the second-order differential equation (3.2.16) in time, we integrate

two coupled, first-order differential equations for velocities and stresses:

ditep = Cappn EDYE v, (3.2.18)
_ @1

va = M (VXEDFE 'tap + ga + 8a + ta) (3.2.19)

We use the following explicit leapfrog scheme for the velocity-stress formulation, since the leapfrog
scheme is numerically efficient and stable with the Fourier method ( Orrey 1995 ):

tag(t+8Y) = top(t—4L) + AtCapn EDYE ' v, (1) (3.2.20)

Valt+A8) = va(t) + AtM [VXED“’E tap(t+ 1)

+ galt+4t) + salt+4:) + tal(t+ %—‘)] (3:2.21)

3.3 Inherent Periodicity of the Fourier Method

The periodic boundary conditions of the Fourier method can be explained by considering the
boundary integral equation (3.1.20), which must be satisfied as well as the governing equations

(3.2.20) and (3.2.21) for a numerical solution. With trigonometric basis functions, we have

ERY E'lu, = t, | o (330)

where

1‘19., = }[ e’ (éz,g-,,\ e) e',\Tnp ds ' (3.3.2)
So ' ' '
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If the surface Sy is taken to be a planar surface with constant z3, then ng = n3 and the surface
integral (3.3.2) with explicit indices becomes

- .\ iUs —ky k)7 Xa X 20 iy — b +h)%a

H@Y(k,l) = (i, )e cap.,,\(j)/o /0 H [e ]d:!:lda:g (3.3.3)

a=] .

Evaluating the integral and using Xy = NoAz, ( Do sum on a ) for a =1,2,3, gives

. o 3 i & +4)

Hfﬂ,(k,l) = Az Azy(il, )cap«,,\(k—i)e = . (3.3.4)

3

Here k denotes the projection of k onto the plane with normal n3. Because of the periodicity of
the exponential in z3 over the computational interval [0, X3], we have that

. . o s 3
B )| = B 0D = Az182y(ih eapa(k - 1) (3.3.5)

z3 =0 z3 = Xs

Then, since the displacement coefficients i1, are wavenumber coefficients and therefore independent

of the spatial coordinates,

~@] - 0] -
a9 a = HE,.,I i, (3.3.6)
z3 =0 z3= X3

Given the relationship in (3.1.18) between ﬁ@, and Hf;), and the relationship (3.1.8) between i,
and u,, it is evident that the boundary condition (3.1.20) at z3 = 0 and z3 = X3 are identical.
The general case in which Sy is not planar is the same, although more complicated to illustrate
analytically.

This coupling of the boundary conditions leads to the familiar wraparound effect of the Fourier
method, in which the stress conditions at one domain boundary ( in this case at z3 = 0 ) are
reproduced at the other boundary ( in this case at z3 = X3 ) for each spatial coordinate interval.
Figure 3 demonstrates the wraparound effect for a 2-D Fourier pseudospectral wavefield simulation
using the governing equations (3.2.20) and (3.2.21). An impuléive vertical dispiacement point
source was applied just below the top-most boundary, and the boundary condition (3.3.1) was
not applied at any of the domain boundaries. Because of the periodicity of the basis functions,
however, the coupling expressed in (3.3.6) still applies and a wavefield is produced at both ends of
the computational domain. The leading wave is a compressional ( P ) wave and the following wave
is a shear ( S) wave.

Figure 4 shows the same problem as that shown in Figure 3 except in this case an explicit zero

traction condition ( to = 0 ) was applied at the top-most boundary so that Heyu, = 0. Here it is

25




evident that the top and bottom boundaries, at z3 = 0 and z3 = X3, respectively, are still coupled
via (3.3.6), but due to the zero traction condition the coupling is different than in Figure 3. In this
example there is a required relationship between the stress components at each boundary, whereas
in the previous example there was none. In this example the S—wavg is followed by a boundary
( surface ) wave confined to the zones near the boundaries at z3=0 and z3 = X3. The éﬁ'ect of
the boundary coupling between these surfaces is to leak energy from the top surface, where the
physically relevant traction-free condition applies, through the bottom surface and into the lower
part of the computational space. The surface wéve that is produced is a poor approximation to the
exact surface wave solution for this problem, and the error increases with increasing propagation
distance from the source.

Evidently the continuous and periodic nature of the trigonometric functions of the Fourier
method makes them inappropriate for an accurate solution to a traction-free boundary condition. In
general, their continuity limits their usefulness for synthesizing wavefields in discontinuous material
structures. The basis set of the Fourier method must be supplemented with additional functions

in order to efficiently incorporate surfaces of discontinuity.

4 The Generalized Fourier Method

4.1 Discontinuity Functions

Boundary conditions on surfaces of discbntiﬁuity can be satisfied by using the general expansion of
(2.5.5), which contains discontinuity functions. The set of discontinuity functions must include at
least one function whose value at one endpoint of its coordinate interval is not equal to its value
at the other endpoint. We refer to such a function as being discontinuous across the endpoints
of its coordinate interval A simple choice for such a function is the sawtooth function illustrated
in Figure 5 along with its truncated Fourier series representation. Let d(’tx;;) represent the 1-D
sawtooth discontinuity function obtained by making the sawtooth orthogonal to all Fourier basis
functions in the z3 coordinate direction. The superscript (I ) identifies this specific discontinuity
function and indicates that it is linear in its argument. Making the function orthogonal to all

Fourier terms amounts to subtracting the Fourier interpolation of the sawtooth from the sawtooth.
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The discontinuity function over unit length is
d%z3) =232+ 3 TE e (4.1.1)
ks#0

where k;, = 27k3 and the limit on the sum incorporates all Fourier wave numbers except zero. This
function is also plotted in Figure 5. The sawtooth discontinuity function by itself is not sufficient
to satify boundary conditions on tractions, because the function’s derivative

Oz =T e (4.1.2)

k3

is continuous across the endpoints of its coordinate interval. However, the sawtooth function
is appropriate for handling displacement discontinuities across the coordinate interval endpoints,
which do not involve derivatives. Therefore, we retain it in the set of discontinuity functions and
consider the addition of a function whose derivative is discontinuous across the coordinate interval
endpoints.

One of the simplest functions whose derivative is discontinuous across the 3 coordinat;e interval
endpoints is 232, but the discontinuity function must be orthogonal to all Fourier basis functions
as well as to the sawtooth. A quadratic discontinuity function which meets these criteria over the
interval [0,1] is
ik z3

1
dPzy) = 2E=0 o Ly b v (41.3)
with derivative
!
A (z3) = d%z3) (4.1.4)

The superscript (II) indicates that the function is quadratic in its argument, in accordance with
the notation of the sawtooth in (4.1.1). The quadratic discontinuity function is plotted in Figure 6
with a normalized amplitude of 0.5.

Note that the quadratic discontinuity function itself is continuous across z3 =0 and z3 =1
but that its derivative, which is the sawtooth discontinuity function, is discontinuous. That is,
the quadratic discontinuity function is Cop-continuous across its endpoints. Therefore, by using
the quadratic and sawtooth functions in the generalized Fourier method for a problem with dis-
continuities, the portion of the solution that is synthesized by the Fourier series is Cl-contiﬁuous,
with Fourier coefficients that decay with wave number k; as ky~!. The Cp-continuous and dis-

continuous portions are synthesized by the discontinuity functions. The supplementary coefficients
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corresponding to the sawtooth function contribute to discontinuities in displacement, while those

corresponding to the quadratic function contribute to discontinuities in strain.

4.2 Pseudospectral Approximation with Discontinuity Functions

In this section, we obtain pseudospectral approximations to the displacement field and its derivatives
using a mixed basis set of trigonometric functions and the sawtooth and quadratic discontinuity
functions in z3 and only trigonometric functions in z; and z2. The formalism developed here is
used in the following section to obtain a weak Galerkin formulation of momentum conservation.

Using the sawtooth and quadratic discontinuity functions in the supplementary basis set of
(2.5.6), there are two supplementary basis functions:

SD®) = eq(k)eg)d® 5 sP(®) = eq(ki)eg (k)d™ (4.2.1)

In terms of the basis set

b=| <@ (4.2.2)

the approxima.ﬁion to the displacement field u,(x,t) is

«8x) = 2% FF ey [a‘?(ic) dz3) + a9 d(”)(:zg)] Ak (4.2.3)
k 3

k

where we have made the time-dependence implicit for the displacement and its expansion coefhi-

cients. Discretizing this field at the collocation points of the trigonometric functions, we have

i) = a9 + 3 [60004% + Pd %) (424)
k 3 . .

k

Since the supplementary functions sm and s(”) are trigonometric functions in the coordinates T
3 3 .
and z,, the supplementary coefficients fx(.? (k) and ﬁ‘? (k) are related to the sets of coefficients

3
ug)(g) and u(lj,) (3) in the discrete space 3 as

33
ik-J
3 = Za‘f?(f()e 7 p=1LI (4.2.5)
3

k
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with
33
(A3 _ 1 ®) 3, "X
) = z;u ~ (e (4.2.6)
2
Therefore, the sets of coefficients
K X
=] o9 and &, =| 49 (4.2.7)
WO &®
are related to one another as in (3.1.7) and (3.1.8),
" - ~1
w, =Ba, ; &, =By (4.2.8)
by defining a block diagonal collocation matrix operator B and its inverse B L
E OO | E' O O
B=|0 B”0 ; B'=| o0 B! o (4.2.9)
o o B? o o B®*'

O is a null matrix of size NjNa x N1 N3, E is the collocation matrix operator for trigonometric

functions, and B(I) and B(H) are discrete trigonometric functions in z; and z:

33
ik-7
B3 =¢7 , P=II (4.2.10)
with inverses
® -1 I @
B - B 4.2.11

For a numerical implementation of the generalized method, it is convenient to define differenti-

ation of the basis functions in terms of a diagonal differentiation matrix. Let
b, =D, “b (4.2.12)

with a diagonal matrix D) and the basis set

e

My = 0 (4.2.13)

K @
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With the modified supplementary functions

D O®) = eqlkeg k) |40 —50=3)] + e 6(2-3)
k3
VD @) = eqlkr)eg k) [d"” [1-56(r=3)] + d%(x-3)] (4.2.14)
the matrix
pf0 O |
D,=| 0 plo - (4.2.15)
o o p?®

has the submatrix fo) of (3.2.7) and the two submatrices

D& ) = ik [1-6(-3)]+ 36(A-3) , P=LI (4.2.16)

4.3 Galerkin’s Method with a Mixed Basis Set

Using the mixed basis set of trigonometric and discontinuity functions, we derive a system of
algebraic equations for the set of displacement coefficients in (4.2.7) using the differential equation

of momentum conservation that was given by (3.1.19):
M é%u, + Koyuy = 8o + 8a + ta : ‘ (4.3.1)

The quantities M, K4y, 8a, 8« and t, are obtained by first evaluating the integrals of the corre-
sponding quantities M, Km, £a, 8a and t, which are given by (2.5.15) through (2.5.19), and then
using the collocation matrix operator B of (4.2.9) and its inverse to transform these quantities and
obtain (4.3.1) in explicit form.

In this section we present the explicit expressions for M and K that are obtained by using the
purely trigonometric representations of material parameters of (2.5.12). Of course, doing so restricts
the realm of possible material models that can be included to those whose properties are continuous
and periodic. Nevertheless, the resulting method is simple and sufficiently general for simulations
involving a free surface boundary. In the most general implementation of the generalized Fourier
method, the material pa.ra.meteré would be represented by mixed set expansions which contain basis
functionsbtha.t are discontinuous across the endpoints of their coordinate interval. In Appendix A,
we discuss the form of the matrices M and K, that result from using a mixed set expansion

containing the sawtooth discontinuity function and the trigonometric functions.
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Using the trigonometric representations of material parameters would be overly restrictive for
material models that contain a jump in parameters across coordinate interval endpoints, such as
the model illustrated in Figure 7. The trigonometric interpolation of the elastic velocities contains
significant Gibbs oscillations at the top and bottom of the model due to the mismatch in parameter
values. However, a more accurate approximation to the layered model is obtained by utilizing
the lower-most region of the grid to effectively blend together the upper-most and lower-most
velocity values, as shown in Figure 8. The improved accuracy of the structure approximation is
necessary for simulations in which the top boundary is a free surface. Because in this study we
approximate absorbing boundary conditions at the base of the model, as well as along the vertical
faces of the model, by using the attenuation scheme of Cerjan et al. ( 1985 ), the lower-most region
corresponds to a region of attenuation and the wavefield within this region is excluded from the
results. Therefore, the structural modification at the base does not matter. However, the structure
gradient within the attenuating region must be small enough that significant impedence mismatch

and accompanying reflections are avoided.

Using a trigonometric representation of mass density, the wave number domain mass matrix

M = / b* (57 e)b v < (4.3.2)
\ %4

with the mixed basis set (4.2.2) is partitioned as
MP0 O

M=|o0o Mm?0 | (43.3)
o o M? o

where the superscripts on the submatrices indicate the basis functions used in the integral of (4.3.2).
The matrix is block dia.gdna.l because the discontinuity functions are orthogonal to the trigonometric
terms and to one another. The submatrix NI(C) is the mass matrix of the Fourier method. Defining
the integrals

. X3 i_j;:J =
6 = % /0 e’ d(29)dzs)dzs , P=1I0 (4.3.4)

the matrices M(I) and M(m are expressed in terms of the quantities

—ijRs
) =5 e ~ 176G) | (43.9)
Js
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- as

3 3
1)4

~i(k-)
(436)

- 33
#O0D = g 2 p@I(ns)e
n

3
Combining these matrices with the coefficients t‘i(?(l) and transforming with B? forP=1 I, we

obtain inertial terms in collocation space:

B, 1) 17 (&, 1) 205D = Vi T p(m) 17(ms) BFuctam) | (437)
m3

Equation (4.3.7) can be written in matrix form as

BOMP 525 = MP 62 (4.3.8)

with the diagonal matrix M(P) whose elements are

MO, m) = Vx 3 p(m)1 7 (ms) (4:39)

Thus we retain the matrix form M 8%u,, for the inertial term in collocation space, with the diagonal

mass matrix

M990 O
M=|0 M?0 (4.3.10)
o o M?

The submatrix M® is the collocation space matrix (3.2.10) of the Fourier method. In practice,
we compute the supplementary matrices of (4.3.9) before time-stepping the algebraic equations of
the generalized Fourier method. In the general 3-D case in which density values are stored for each
node in the computational grid, storing the quantities 3, p(m)J (I)(mg) and ¥, p(m)I m(ms)
requires two additional arrays of size Ny x Na, compared to the storage of the mass density p(m)
in the Fourier method. !

Using the representation (4.2.12) for differentiation, the stiffness matrix K,,, of (2.5.16) with

the mixed basis set becomes

Ko, = / " (D5 ™) (2apmre) (Dr ¥b) Td% (4.3.11)
Vx ’

1Storage requirements are reduced significantly if no redundant values of the material properties are stored, so

that all nodes with the same corresponding value of mass density are associated with the same component of the

mass density array.
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T . . .
where we have made use of the fact that Dy = D, for a diagonal matrix. Defining the matrix

Gapyr = BGaﬁ«,AB_l (4.3.12)

where

. Ns o (T T

Gopys = / b~ (caprre) Ob'd% (4.3.13)
Vx

the collocation space restoring force Kq,u, is
Koy, = BD}B 'GosnBDAB 'u, (4.3.14)
The matrix Gogya is partitioned as
G G O

i (4 I
Gaosnr = | GS2n @5 GEAa (43.15)

0 GY% Gogn
where the superscripts indicate the basis functions used in the integral of (4.3.13). The contribution
Ggfg)., 1 is just the elastic modulus matrix of (3.1.15) scaled to the problem volume:

GSE.,,\ = VxCapya (4.3.16)

The supplementary contributions to Gagya are given in Appendix A. There the restoring force
Kayu, is combined with the inertial term Mafua and the source terms g,, S, and t, for a
mixed basis set to obtain a velocity-stress formulation of the differential equations of momentum
conservation.

It remains to compute the source terms ga, 8o and t, for the mixed basis set. Using the basis

set (4.2.2) in the applied body force terms (2.5.17) and (2.5.18) gives the representations

&a 57
go = Vx| DY and 8, = Vx| DP5¥ (4.3.17)
p@sD p@sD

where (gf?, g@, g‘? ) and (§S;), ég), é(g) ) are the sets of coefficients of the body force expansions and

'D(I) and ’D(m are, respectively, the sawtooth and quadratic discontinuity function normalizations:

X - *
pP= & / *dP125)dD (zs)dzs , P=11I (4.3.18)
. 0
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Since the supplementary basis functions are primarily localized at bounding surfaces, however, it
is sufficiently general to use only a Fourier expansion of the body force densities. Then only the
uppermost partition of g, and &, is non-zero in (4.3.17).

For the geometry of the problem considered here, the applied surface traction term (2.5.19)

becomes
" XopXa
ota = / / b*t.3 dzidzs
0 JO
z3 =0
and
X3 Xar Xy
te = / / b*t.3 dzld:!:f_;l (4.3.19)
0 JO 23 = Xs

for the surfaces at z3 = 0 and z3 = X3, respectively. Since we are using a basis set that is continuous

in the coordinates z; and za, it is sufficient to expand Z,3 as

- : 6. 3 "1.3"”‘
ta3(x)] = Y %as(k)e ;
z3 =0 13(
,13(‘:
- " 3 i- X
faa(x)| =3 *las(k)e (4.3.20)
T3 = X3 ]3(

with expansion coefficients 0503(130 and X faa(fg). Then the surface tractions of (4.3.19) become

0203 x£a3
0%, = X1X2 | O%a3d%0) Xty =X Xa | X3 dP() (4.3.21)
Otos a® (0) Xta3 d® (Xs) .

and the source term tq in (4.3.1) is composed of
0t, = B%, and Xt, =B*t, : : : (4.3.22)

for the contributions on the surfaces at z3 = 0 and z3 = X3, respectively.

4.4 Boundary Conditions
The applied suﬁme tractions of (4.3.22) are incorporated into the present development of the
generalized Fourier method by way of the boundary integral equation (3.1.20),

BH., B u, = tg (4.4.1)
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where

ﬁ@, = f b* (éIﬂ.,A e ) b,,;rnp ds (4.4.2)
So

and the bounding surface So corresponds to the coordinate planes at z3 = 0 and z3 = X3. Here we
address the particular case of a traction-free boundary at z3 = 0 to represent the Earth’s surface.
This condition is applied in conjunction with a zero-displacement condition at z3 = X3, since
these conditions together provide relatively simple expressions for the supplementary expansion
coefficients of the displacement field.

For the case of a traction-free surface at z3 = 0 and isotropic media, the boundary integral
equation (3.1.20) becomes

% (m)é(ms) + p(m)s(ma)Ze‘l m{ i, [ﬁ‘s”(i)d"’+ a9 d‘”’]

+ 20D d? + aDH ™ } =0 a=1,2 (4.4.3)

vzg=0

and

t%‘%(m)«s(ma) +

Zeqm{ /\(m)[i.l, (a‘{’(i) d®+ D) d(”)) + ,-,,(—(n(l) 4 290 d“"’)]

+ [A(m) + 2p(m) ] [a%”(i)d"’ + a9 d® ] } §(ms) = 0 (4.4.4)

3:3=0

. ()

and we have three sets of equations for the six sets of unknowns iy and ﬁ(g), a =1,2,3. Three

additional sets of equations are obtained from the zero displacement condition at z3 = X3:

3 3
S €00 + 4909 d%xs) + 2D x) = 0 (4.4.5)
k3

These sets of equations are used to express the sawtooth discontinuity function expansion coef-
ficients in terms of the Fourier and quadratic coefficients, since the sawtooth function serves to
synthesize discontinuities in displacement across the endpoints of the z3 coordinate interval. The
resulting equations for the sawtooth coefficients are combined with the zero traction equations

(4.4.3) and (4.4.4) to obtain equations for the quadratic coefficients.
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The zero displacement condition at z3 = X3 is not an optimal treatment of the boundary
condition at the base of the computation space, since it requires the use of the costly attenuation
scheme of Cerjan et al. ( 1985 ) to simulate a radiation condition. This reduces the generalized
method’s efficiency. In addition, combining the zero displacement condition with the zero traction
condition restricts the possible material structure models that can be handled with the method to
models with constant elastic moduli at all nodes at z3 = 0. Because the boundary conditions for
traction involve the products of strain and elastic moduli, combining them with the constraints on
displacement at z3 = X3 results in equations in wave number space that involve both displacement
coefficients and the discrete convolutions of displacement coefficients with elastic moduli coefficients.
The convolutions are in the z;- and zs-coordinate directions, so the only way the displacement
coefficients can be efficiently isolated ( at each time step ) is to assume no variation in the elastic
moduli at z3 = 0. Then the only non-zero modulus coefficients are those that correspond to the
wave numbers £, = 0 and k, = 0. Thus, the constraints restrict the possible material structure
models to those with homogeneous elastic moduli values at the location of the free surface. The

use of other possible boundary conditions is discussed in section 6.

4.5 Curvilinear Coordinates

The generalized Fourier method, as formulated above in Cartesian coordinates, admits disconti-
nuities only on coordinate planes that traverse a rectangular volume, Irfegula.r interfaces can be
incorporated into the method by using a coordinate transformation that maps the irregular in-
‘terfaces in the physical spa.ce into coordinate planes in a Cartesian computational space. The
numerical method is formulated in the computational space, and quantities in the computational
space are related to their associated quantities in the physical space by an inverse transformation.
We incorporate a mapping between Cartesian and general curvilinear coordinates by transforming
the equations for momentum conservation (2.5.13) and {2.5.14) from the physical space into the
computational space. for solution. The transformation properties of the field quantities in (2.5.13)
and (2.5.14) are derived in Washizu ( 1968 ). These properties are used in Appendix B to derive
the integral formulation of momentum conservation in the curvilinear computational space. As the
use of coordinate transformations in pseudospectral methods is well established ( Fornberg 1988,
Tessmer et al. 1992; Tessmer and Kosloff 1994 ), here we provide merely an overview.

Let a general curvilinear coordinate system x designate the physical space, and define a trans-
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formation T'(x) = x’ that maps the physical space into the computational space with Cartesian
coordinates x’. Coordinate directions in the physical spéce are labeled with the dummy indices
a, 8,7 and A, while coordinate directions in the computational space are labeled with corresponding

dummy indices ¢, x, ¥ and w. With the Jacobian of the transformation

oz

— az; # 0 | (4.5.1)
a unique inverse transformation exists and
0z 9Ty
62:; 525 = dap (4.5.2)

For a given transformation, the Jacobian and the coefficients g‘f} and g—:% are obtained at collo-
¢

cation points and then included in the integral formulation of momentum conservation by using
Fourier interpolation of the nodal values. Either the transformation z, = Ia(3'¢) is specified an-
alytically, in which case the Jacobian and coefficients .are obtained exactly, or z, is specified at a
set of discrete points in the physical space which maps to a set of collocation points in the compu-
tational space. The discrete locations in the physical space are chosen to match some geometrical
features, for example some surface topography or a curved internal interface. Once enough points
are specified to sufficiently discern the given features, the remaining points in the physical space
are obtained by interpolation. Fornberg ( 1988 ) uses a bicubic spline interpolation, which also
provides the derivatives gff: However, the derivatives can be approximated with two-sided finite
differences within the grid and one-sided finite differences on the grid borders.

In this study we apply a coordinate transformation to reduce the physical space’s grid spacingb
in the vertical direction in the vicinity of the traction-free surface, as illustrated in Figure 12. As
shown in the following section, a moderate reduction of grid spacing greatly improves the accuracy
of the surface waves computed with the generalized Fourier method. We have chosen an analytic
transformation that is symmetric about the middle of the vertical coordinate interval, but it is
sufficient to cluster grid points only near the top boundary of the model for improved surface wave
accuracy. The symmetric tranformation, however, admits a simple inverse mapping so that source

and receiver positions can be easily specified.
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5 SIMULATION EXAMPLES

In this section, the accuracy of solutions using the generalized Fourier method ( GFM ) is tested
for problems involving a free surface boundary condition. For each problem, the source was applied
as a delta function in space and time. The leapfrog time-stepping scheme of (3.2.20) and (3.2.21)
was used with a time step chosen small enough that numerical dispersion is neglible ( Kosloff and
Baysal 1982 ). ’

5.1 Lainb’s Problem

For Lamb’s problem, an impulsive source on the surface of a homogeneous half-space, we compare
the GFM solution to the analytic solution and to the solution obtained using a fourth-order finite
difference method. For the following comparisons, the P-wave and S-wave velocities of the medium
are 5 km/s and 3 km/s, respectively, with a mass density of 2.5 g/cm3. The grid spacing used was .
1 km in each coordinate direction except where otherwise noted. For these values, the Rayleigh
wave velocity is about 2.74 km/s, and the frequency of the Rayleigh wave with a wavelength of
2 km, corresponding to Nyquist sampling of two nodes per wavelength, is 1.37 Hz. Except where
otherwise noted, we low-pass filter the results with a corner frequency of 0.5 Hz, which corresponds
to a grid sampling of the Rayleigh wave of about 5.5 grid points per wavelength.

The kinetic energy density field of the GFM solution to Lamb’s problem is shown in Figure 9,
where the source was applied in the middle of the upper-most boundary at a depth of 1 km ( one
grid spacing ). The field was low-pass filtered in the wavenumber domain to remove high spatial
frequencies. Notice the presence of very small disturbances at the base of the grid, which propagate - -
at the Rayleigh wave velocity, and the ( weak ) P-wave disturbance propagating from the base,
which was caused by the shallow source. These disturbances result from the incomplete decoupling
of the top and bottom of the grid by the finite set of discontinuity functions. The displacement
comparison of the analytic and GFM solutions is shown in Figure 10. The largest error in the figure
between the GFM solution and the exact solution is less than about twenty percent. Figure 11
compares the GFM and analytic solutions after low-pass filtering the traces with a cutoff frequency
of 0.25 Hz. At this frequency, the smallest wavelength of the Rayleigh wave corresponds to a length
of about 11 grid points, and the GFM solution is nea.rly exact. However, the body waves are

greatly oversampled at this frequency. For example, the P-wave is sampled at about 20 grid points




per wavelength. Therefore, such extreme low-pass filtering is wasteful from the standpoint of the
problem’s coﬁputer memory and operation count requirements.

On the other hand, such oversampling is necessary to obtain accurate surface wave results using
a low-order finite difference method. Figure 12 compares the analytic solution to Lamb’s problem
to the results from a staggered-grid finite difference method which is fourth-order accurate in space
and second-order accurate in time ( Levander 1988 ). In our version of the method, however, the
treatment of the traction-free boundary condition is a combination of fourth-order and second-order
spatial approximations. The solutions in Figure 12 were low-pass filtered with a corner frequency
of 0.25 Hz and should be compared to those of the GFM method in Figure 11 since the source was
applied at a depth of 1 km. The finite difference solution exhibits a large amount of dispersion
caused by the spatial discretization. Higher-frequency energy is delayed. When the finite difference
solution was low-pass. filtered with a cut-off frequency of 0.125 Hz, the Rayleigh wave was sampled
at about 22 grid points per wavelength and we found the Rayleigh wave fit to be qualitatively better
than the GFM fit of Figure 10, where the Rayleigh wave was sampled at about 5.5 grid points per
wavelength. However, the finite difference fit at 0.125Hz was not as good as the GFM fit of Figure
11, where the Rayleigh wave was sampled at about 11 grid points per wavelength. Therefore, it
appears that the generalized Fourier method produces Rayleigh wave solutions for Lamb’s problem
that are comparable in accuracy to the solutions of the finite difference method when between one
half and one fourth as many grid points per minimum wavelength are used.

The error in the numerical solutions, at a given frequency, can be reduced by reducing the
vertical grid spaci_ng in the vicinity of the free surface with a coordinate transformation. Although
the reduced gridA spacing necessitates a smaller time-step size, it is more efficient, from a memory
requirement standpoint, to cluster grid points near the boundary rather than to reduce the low-pass
cutoff frequency. Figure 14 compares the GFM and analytic solutions obtained using the grid of
Figure 13, in which the vertical grid spacing has been reduced in the vicinity of the surface so
that min(Azs) = 0.5 km. The horizontal displacement solution is significantly better than the
solution of Figure 10. Further reduction of the vertical grid spacing in the vicinity of the free
surface improves the GFM solutions, particularly for the horizontal displacment, but the marginal
improvement in accuracy is at the expense of a large increase in the number of iterations required
to compute over the same time duration. It appears that the optimal configuration for efficiently

computing highly-accurate surface waves with the GFM algorithm is moderate grid clustering near
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the boundary, such as that used for the simulation of Figure 14.

5.2 Layer Over a Half-Space

In order to test the accuracy of the generalized Fourier method in heterogeneous media, we have
compared GFM solutions to the solutions obtained by a normal mode method ( Harvey 1981 ) for
vertically-layered material structure models. The normal mode method produces higEIy accurate
and efficient Green’s functions for layered media, except for the contributions from very high phase
velocities that correspond to energy propagating with nearly normal incidence upon material layers.
To ensure the accuracy of the normal mode solutions that were used for comparison in this paper,
we compared some of the normal mode solutions to the solutions obtained by the discrete wave
number integration method of Apsel and Luco ( 1983 ).

In the generalized Fourier method simulations performed with the following 2-D heterogeneous
material models, reflections from the left-hand, right-hand and bottom grid edges were minimized
by using a variation of the damping une of Cerjan et al. ( 1985 ). We find that applying
strong damping at the lower-most nodes of the grid adversely affects the Rayleigh wave solutions
along the top of the grid. This is an artifact of the incomplete decoupling of the top and bottom
boundaries with this method. Strongly damping the disturbances at the base of the grid in Figure 9

affects the Rayleigh wave at the surface as well. Instead of applying the strongest level of damping '

at the base of the grid, we use a level of damping that gradually increases from the base to a
distance of several grid points above the base, and then gradually decreases with further distance
from the base. This minimizes the effect on the real surface waves at the free surface.

We compare the velocity time series obtained with the generalized Fourier and normal mode
methods for an explosive source at a depth of 1 km in the layer over half-spé.ce structure of Figure
15. The structure is intended to represent a crude model of the crust and upper mantle. The
source was applied at a depth of 1 km as an impulse in space and time, velocity time-histories were
recorded on the free surface of the 2-D space, and the results were low-pass filtered. Because the
-geometry of the normal mode method is cylindrical and that of the generalized Fourier method is

Cartesian, a gain factor was applied to the normal mode traces to remove the geometric spreading

of the Rayleigh wave. Therefore, the trace amplitudes of the body wave phases do not match at

all source-receiver dxsta.nces Flgure 16 compares the GFM and normal mode solutions for a corner

frequency of 1.0 Hz. At this frequency, the smallest wavelength in the wavefield corresponds to a
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distance of about 3.5 km. This is about the smallest wavelength that can be accurately represented
with the generalized Fourier method for the given velocity model and a grid spacing of 1 km in both
coordinate directions. At higher frequencies, the grid-point-per-wavelength sampling is insufficient
to accurately represent all phases in the wavefield. The mismatch between the GFM and normal
mode solutions at the trailing edge of the Rayleigh wave may be caused, in part, by the damping
technique employed in the GFM method to prevent reflections from the base of the grid. That is,
the very low-frequency oscillations of the GFM solution about the normal mode solution for times
later than the arrival time of the Rayleigh wave may be low-frequency reflections from the damping
region. On the other hand, the low-frequency mismatch may be due to the normal mode method,
which exhibits error at low frequencies from the application of a high-velocity cap layer at depth
to trap modes between the cap layer and the free surface ( Harvey 1981 ).

5.3 Layer Over a Half-Space with Q.

Whereas realistic models of earth structure must account for dissipative mechanisms, we have
incorporated anelastic attenuation into the generalized Fourier method by applying the method
of Emmerich and Korn ( 1987 ). In their method, frequency-dependent Q is approximated as
the effect of a superposition of relaxation mechanisms. This time-domain approach is much more
computationally expensive than the simple ¢* technique of Vidale and Helmberger ( 1988 ), but it
is valid for any level of attenuation and makes it possible to specify distinct levels of attenuation
within different regions of the problem space. We have tested the method and its effect on the
GFM surface wave solution by applying it to the layer over half-space problem and comparing
the solution to the solution obtained with Harvey’s normal mode method. In the normal mode
method, anelasticity is included by specifying imaginary components of material moduli which are
frequency dependent, and the approximation is accurate only for weakly attenuating media. ( See
Aki and Richards 1981, Chapter 5. ) Therefore, for both compressional and shear waves, we chose
a constant Q of 300 in the upper layer and a constant @ of 1000 in the half-space. This Q@ model
was included in both the GFM and normal mode simulations used to produce the velocity traces
in Figure 17. The simulations used to produce Figure 17 were identical to those used to produce
Figure 16 except for the addition of anelasticity. A gain factor was applied to the normal mode

traces to remove the geometric spreading of the Rayleigh wave. The GFM and normal mode results

match very well for the given Q values.
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5.4 A Thin, Low-Velocity Layer

In order to test the accuracy of the GFM results in heterogeneous media with a coordinate trans-
formation included, we have used the computational grid of Figure 13 to obtain accurate GFM
simulations in the material model of Figure 18. The model is identical to the layer over half-space
structure except for the addition of the thin layer at the top. For this model, the coordinate trans-
formation is used to increase resolution within the thin layer without oversampling the remainder
of the model space. The coordinate transformation reduces the grid spacing in the v1c1mty of the
free surface from a uniform spacing of 500 meters to a minimum spacing of 300 meters. The top
layer of the structure is 1100 meters thick. Figure 19 compares the horizontal and vertical veloéity
traces of the GFM and normal mode solutions for an explosive source applied at a depth of 650
meters. The traces were recorded on the free surface and low-pass filtered with a corner frequency
of 0.5 Hz. A gain factor was applied to the normal mode traces to remove the geometric spreading
of the Rayleigh wave. The low-velocity layer causes the Rayleigh wave to be highly dispersive. The
GFM solution would be much less accurate if the coordinate transformation were not used, because
the uniform grid spacing of 500 meters does not include sufficent nodes within the low-velocity
layer. With the coordinate transformation included, 4 nodes in the vertical direction are included

in the top layer.

5.5 A Randomized, Layered Structure

GFM synthetics were computed for the layered crust and upper mantle model of Figure 20, and for
this model with the addition of random variations in velocity values about their mean values. Our
intent was to demonstrate the stability of the generalized Fourier method for models containing
strohg, small-scale lateral variations in material structue. For the randomized medium, a self-
similar autocorrelation function was used with a correlation length of 5.0 km in both the horizontal
and vertical directions. The rms fluctuations in the velocity model change from layer to layer
in depth ( with decreasing fluctuations with depth ) and also decrease within lateral zones at
greater distances from the explosion source. The strongest fluctuations were 25 % rms within the
source region, which were meant to approximate a tectonic environment. Figures 21(a) and 21(b)
compare the free surface vertical velocity time series for the models without and with randomization,
respectively. Evidently the effect of the random fluctuations is to reduce the a.mplitude of the Ry

phase as a function of distance from the source and to increase the amplitudes and complexities of
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the Py and L, phases. Since this effect is generally observed, we conclude that random fluctuations
are responsible for the relatively large L, observed relative to R, at greater distances from the
source. In this case, the Ly energy is largely derived from scattering from R, with an associated

rapid attenuation of Ry with distance and a relative growth of Ly amplitudes.

5.6 A Basin Structure

In the final example, we test the effects on GFM crustal phase simulations of the large-scale lateral
variation in structure illustrated in Figure 22. This structure is intended to approximate the
occurrence of a sedimentary basin along the source-receiver path. Figure 23 shows the seismograms
obtained from a simulation through the structure of Figure 22. These results should be compared
to those in Figure 21(a) since the velocity structure was the same for both simulations, except for
the presence of the basin. Clearly the Ly phase is strongly affected by the basin structure, with

reduced amplitudes upon emergence from the basin. That is, this large-scale structure had the .
effect of “blocking” Lg. The P and P, phases are similarly influenced by the basin and mantle

uplift, and R, energy is reflected upon incidence on the basin.

6 CONCLUSIONS

The generalization of the Fourier pseudospectral method develéped in this study involved supple-
menting the Fourier method’s trigonometric basis set with discontinuity functions and using the
weak Galerkin form of weighted residuals to approximate the governing equations for momentuxﬁ
conservation. With the particular choice of the sawtooth and quadratic discontinuity functions, ac-
curate simulations were obtained for problems with a traction-free surface. In principle, other forms
of discontinuity functions could be used in a generalization of the Fourier method, as long as they
suitably handle the discontinuous portion of an aﬁproximate solution. They must. be érthogonal
to one another and to the Fourier basis set, and each additional function must be a degree higher
in continuity than the previous one if adding the function is to improve convergence. A systematic
method for obtaining a set of polynomial-based discontinuity functions up to a specified degree
of continuity is given in Orrey ( 1995 ), and the possibility of using other non-polynomial-based
functions is discussed there. |

The natural extension of the existing generalized Fourier method, with the sawtooth and
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quadratic discontinuity functions in the z3-coordinate direction only, is to couple horizontal in-
terfaces with boundary conditions and create a layered structure. The material properties would
be heterogeneous but continuous in each layer, and discontinuities would exist at layer bound-
aries. In a more general multi-domain method, discontinuity functions would be included in all
coordinate directions to create a spectral element method ( Patera 1984 ). In order to produce
a multi-domain method with the generalized Fourier method, however; it is mecessary that the
decoupling of coordinate interval endpoints is complete. In the existing method, with the sawtooth
and quadratic discontinuity functions, coordinate interval endpoints are not completely decoupled.
This is evidenced by the presence of waves at the base of the grid in Figure 9. Therefore, it may
be necessary to include additional discontinuity functions in a multi-domain method. On the other
hand, the surface wave solutions of Lamb’s problem were improved in the existing method by using
a coordinate transformation ( Figure 10 versus Figure 14 ), so using a coordinate transformation
with the sawtooth and quadratic discontinuity functions may provide sufficient decc;upling for a
multi-domain method.

The system memory and operation count requirements of the generalized Fourier method are
not significantly larger than those of the standard Fourier method. The number of supplementary
functions in the generalized method is neglible compared to the number of Fourier basis functions,
and the computations required to apply boundary conditions are performed only over a 1-D space
( lines ) for 2-D problems and a 2-D space ( planes ) for 3-D problems. Because of the high
wavefield sampling efficiency of pseudospectral methods, the generalized Fourier method may prove
most useful for 3-D problems. In 3-D, there are 9 field variables and 3 material parameters to be
stored at a single time step in the leapfrog velocity-stress formulation. However, it is usually not
necessary to store independent material parameters at every node in the problem space. In practice,
the memory requirements for storing the material parameters can be effectively neglected in 3-D
problems. Therefore, it is typically necessary to store about 9 x 4 = 36 bytes per node for single
precision computations. Then propagation to a distance d, measured in minimum wavelengths,

with a method that requires a sampling of N nodes per minimum wavelength requires a storage
(in bytes ) of
S = 36(Nd)3
in three dimensions. For a fixed propagation distance, the storage scales as the cube of sampling,

and optimal sampling is highly desirable.

44




One of the most pressing topics for increasing the efficiency of the generalized Fourier method
is the approximation of radiation boundary conditions. Using the attenuation method of Cerjan et
al. ( 1985 ) wastes a considerable amount of available grid to remove unwanted reflections ( and
wraparound from the periodicity of the Fourier method ) at grid edges. The zones of attenuation
used in the simulations in this study were about § minimum wavelengths in length. One possible
means of more accurately and efficiently simulating a radiation condition at z3 = X3 is to use a
paraxial approximation at 3 = X3 ( Clayton and Engquist 1977; Chang and McMechan 1989 ).
Kosloff et al. (1990 ) use such a paraxial approximation in their Chebyshev-Fourier pseudospectral
method by constraining the ingoing characteristic variables of their algebraic system to be zero at
the base of the computational space. Incorporating such a radiation condition into the generalized

Fourier method is a topic of our current research.
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Appendix A
The contributions to the matrix Gogya of (4.3.15) from the supplementary functions of (4.2.14)

are the following:

G a(n,B) = &(A—3)Nscapya(n)5(ns)
GY9 ABn) = 8(8 - 3)capyr(0)d(ns)

Ggg,,\ (8,0) = > capya(n)
. [5(16 ~3)8(A —3)N38(n3) + [1 - 8(8-3)][1 —6(r - 3)]]1(0("3)

e [1=8(8-3)]6(0-3) Y cappr (@I (ns) (A1)

0 a(D,B)

CohrB ) = §(B-3)[1—0-3Y capn@I(ns)
Y@ D) = 3 cappa(n)
(86~ 3)6(0 = 3)1%(ns) + [1 = 55 - ][ — 50~ I D) |

Examining the submaf:rices of Gggya in (A.1), it is evident that all submatrices other than
Gg,lg),, y are nonsymmetric in the indices o and (. Therefore, the quantity Gag,xBD )\B_lu.7 is also
nonsymmetric in é.nd B. The contributions to Gog,2BD ,\B_lu,7 from the submatrix G(;f,).,;\ of
(4.3.16) are the nodal values of stress in the Fourier method,

-1
tap = Capyar ED,E u, (A.2)

which are symmetric, but the supplementary contributions to G4, BD ,\B"Iu.7 do not correspond
to stress field contributions from the supplementary basis functions. That is, they are not the

products of the modulus tensor and strain
Capra ﬁ(l_:) TD,\(PJ WP p - 1,1

. . . -1 . .
evaluated at collocation points. Therefore, storing Gag,2xBD2B u, is more costly than storing a
symmetric quantity in a coupled first-order differential equation formulation.

It is possible to store symmetric quantities, however, by dividing Gap,s into three separate

matrices as follows. Let

Goppr = OB Copys V0 | (A3)
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where

1 O . 0] 1
@@ — (B)A(Ie) (e)A(n) o) ; ('\)\Il =|o0
o OATh @pTD 0

and

c%, O O
Capyr = (0] CS,?,, » O
o o c4,

with the following submatrices:

A" @,n) = 8(8-3)8(ns)
A @) = [1-5(8-3)
NG = se-3
AT R,5) = [1-5(8-3)
OACD (L 2) = N38(r—3)8(ns)
CAD@E) = [1-5(r-3)
AR = s(a-3)
WP @E) = [1-5(-3)]
and

Coa(mn) = capyr(n)

CHn@dd) = 3 10ns)cappr(n)
n3

ChaER) = 1P (ns)capm(n)
n3

Then we define the vector 7,4 as

Tap = Capya Oy B D, B_lu,,

WD o
(A)A(II) (z\)A(III)

0 Ba@n

(A.4)

(A.5)

(A.6)

(A7)

(A.8)

which is symmetric in the indices a and . The purely trigonometric contribution to 7ag is the

collocation domain stress of the Fourier method. Combining the restoring force (4.3.14) with the
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inertial terms of (4.3.7) and the source terms in (4.3.1), the differential equation of momentum

conservation (4.3.1) becomes the coupled set of equations

0tTap = Capya ('\)‘I’ BD, B—l vy (A.9)
and
diva = M (~Vx BD3B ' @ 705 + o + 80 + ta) : (A.10)

These equations are the generalized analogue of equations (3.2.18) and (3.2.19) of the Fourier
method.

* In the most general implementation of the generalized Fourier method, the basis set expansions
of the material properties would involve functions which are discontinuous across the endpoints of
their coordinate intervals. Here we discuss the additional contributions to the mass and stiffness
matrices which result from considering mass density and elastic moduli expansions in terms of the -

trigonometric and sawtooth discontinuity basis functions:

W= e+ 50 S = e + elhas” (A.11)

For these expansions, the mass matrix (4.3.10) of the generalized method has the form

M(ee) M(‘I) M(‘m

M= | M@ M D (A.12)
M(Ue) M(IU) M(HU)

and the matrix Gggya of (4.3.14) is partitioned as

e el \ el

afyA afy afyX
T T T
Guﬂ‘P\ = Gsz)‘p\ G(ag‘yz\ G(ag)w\ (A.13)
' Me) {¢ (4
c%, c9, af,

The additional terms in the matrix Gog,x do not add significantly more computation to the method,
but the fact that the mass matrix M is no longer diagonal makes its inversion at each discrete
time step more difficult. A satisfactory means of treating problems with materialvmodels that
are discontinuous across the endpoints of coordinate intervals may be to use only a ( continuous
and periodic ) trigonometric expansion for the mass density while including discontinuity functions
in the modulus tensor expansion. For earth models in which mass density can be treated as

approximately constant, such a treatment is obviously sufficient.
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Appendix B
As in section 4.5, let a general curvilinear coordinate system x designate the physical space,
and define a transformation T'(x) = x’ that maps the physical space into the computational space
with Cartesian coordinates x’. Coordinate directions in the physical space are labeled with the
dummy indices a, 8,7 and A, while coordinate directions in the computational space are labeled
with corresponding dummy indices ¢, x, ¥ and w. From now on, when the position vector X’ is not
explicit, the prime is placed on a subscript or superscript. For example, b, (X') is written as b ,..
An integral formulation of momentum conservation in the curvilinear computational sf)ace is
obtained by transforming the quantities in (2.5.13) and (2.5.14). Upon transformation to the primed
system, the volume element dV transforms as dV = JdV’. Therefore, the inertial term Ma,ﬁa
becomes
M o2, = / b0 b Jav' R, (B.1)
v
where p(b) is the basis set expansion of the density that is specified in the physical space x(x’). Since
mass is invariant with respect to a coordinate transformation, the density transforms as p/ = Jp.
The transformation has been performed only to evaluate the integral in the computational space;
the displacement coefficients G, still correspond to displacement components in the physical space.

In order to transform the restoring force f{a,.,ﬁ,,, the chain rule is applied to the basis functions

b as
oz’
= = B.2
bs(x) = bx() 52 (B.2)
and the modulus c,g4) is expressed as a contravariant tensor of rank four:
0z Ozg Oz Oz
= 1t B.3
Cabrd = XV 50T, 82, 6, Bz, - (B-3)
Then
K, o, = /V Bl o b TAV' B, (B.4)
where
éx’ oz’ )
Cfxb)x'w' = Cappr 2 ' (B.5)

and cg,b)p,, s is the basis set expansion of the modulus that is specified in the physical space.
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Components of the body forces g, and 8, and the surface force t, in the physical space are
expressed in terms of their components in the computational space, where they are applied. The
body force density g4 in the computational space is obtained from components in the the physical

space by the transformation

3:z:¢

9¢ = Gag— —J (B.6)
a

Upon transformation, the body force becomes _

] « ® 0Za

&a = /,b 9 a—z—dV’ (B.7)

where g,(?; is the basis set expansion of the body force density in the computational space. A similar

argument holds for §,.
Applied tractions fy, in the computational space are obtained from the components tap in the

physical space by the transformation

_ 6:r 61:

t¢1x: = t”'ﬂaz (B.8)

axﬂ
The surface element n,dS = dS, transforms as dS, = J g;’tdsw, and the applied surface force

term becomes

E = b* t¢’x’"x’ 0Zq JdS’ (B.g)
S’ oz’ 4,

where fgxlnxl is the basis set expansion of the applied tractions in the computational space.

Combining terms, the weak form of momentum conservation becomes

/ b"® b JdV' 82,

+/;,, brx’ Ct(xb)x’7w’ b'wl Jdv’ ["1,7 = /;,’ b* [gg’)’ + 8(2] 620 dV'

b’ 9 ny gf‘i Jds' | (B.10)
For a given transformation, the Jacobian and transformation coeﬁicxents o and 5;5‘ are obtained

at collocation points. Then the integrals in equation (B.10) are performed by approximating the
Jacobian and metric coefficients with their Fourier interpolants, in the same manner as the density,

modulus, and applied forces are approximated. The modulus-Jacobian combination in equation

(B.10) becomes
e ’ . . -1 k'( 7 —x' ) .
B NI = G D ewensDIG T (8.1)
J
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where

Cax'yor()J Q) = I:Caﬂ"/a\(x(xl)) X (x)2 “’(X’) J (X’)] - (B12)
x' = jaAz:.ia
s ©® ® 8= @ o= . .
The quantities p"'J, g¢;3—“ y S¢ 5—" and td’x’ nx:a—“- J are similarly represented. The integral
formulation of momentum conservation that has been given above reduces to a differential formu-

lation in which the chain rule is applied to the spatial derivatives to incorporate the effects of the

transformation.
The boundary condition constraints of section 4.4 are applied in the computational space.

The stress tensor t,g in the physical space is expressed in terms of spatial derivatives in the

computational space, i.e.

laf = Cafyr Uy
(B.13)

= Cafyu! Uy’
and the modulus tensor cogy.~ is obtained from the modulus tensor c,g,x in the physical space as

oz.,
Cafyw’ = Cafivr aT (B.14)

a

The displacement constraint of (4.4.5) remains unchanged.
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Figure Captions

Figure 1: Schematic treatment of complicated earth models with the generalized Fourier method.
The physical model is mapped to a Cartesian computational space in which all surfaces of dis-
continuity are Cartesian coordinate planes. Discontinuous variations in material parameters are
indicated by thin black lines and continuous variations are indicated by thicker gray lines. Within
the nth domain, the sets of trigonometric functions ey and e"g , in the z; and z3 coordinate
directions, respectively, are supplemented by the sets of discontinuity functions d%; and d7g, .
With the discontinuity functions included, boundary conditions can be applied.

Figure 2: Schematic illustra.tiqn of 1-D endpoint decoupling with discontinuity functions. The
periodic spatial domain of the Fourier method, shown in (a), is modified by the introduction of
the discontinuity function set d g to produce the domain of (b), which is nonperiodic in z2 with
bounding surfaces Ss.

Figure 3: Energy density snapshot of a Fourier method wavefield from an impulsive vertical dis-
placement point source applied just below the top-most boundary. The wraparound phenomenon

is due to the periodic nature of the basis set.

Figure 4: Energy density snapshot of a Fourier method wavefield from an impulsive vertical dis-

placement point source with a traction-free boundary condition applied.

Figure 5: The sawtooth discontinuity function. The function is the difference between a sawtooth

and the Fourier expansion of a sawtooth.

Figure 6: The quadratic discontinuity function. The function is orthogonal to the sawtooth dis-

continuity function and to all Fourier terms.

Figure 7: Trigonometric interpolation of an elastic velocity model. The actual model is shown as a

dotted line.

Figure 8: Trigonometric interpolation of a periodic elastic velocity model. The actual model is

made periodic by tapering the velocities and density within a region of attenuation.
Figure 9: Normalized kinetic energy density field of the GFM solution to Lamb’s problem.

Figure 10: Comparison of GFM and analytic displacement solutions to Lamb’s problem.




Figure 11: Comparison of GFM and analytic displacement solutions to Lamb’s problem with a
low-pass cutoff frequency of 0.25 Hz, or half the cutoff frequency used for Figure 10.

Figure 12: Comparison of the fourth-order finite difference and analytic displacement solutions to
Lamb’s problem. The wavelength of the Rayleigh wave at this frequency corresponds to about 11
grid points.

Figure 13: Spatial domain with grid points clustered in the vicinity of the traction-free surface.

Figure 14: Comparison of GFM and analytic displacement solutions to Lamb’s problem when the
vertical grid spacing in the GFM simulation was reduced in the vicinity of the free surface so that
min(Azy) = 0.5Az;.

Figure 15: Layer over half-space velocity model used for comparisons of the GFM and normal mode
methods.

Figure 16: Comparison of the horizontal ( left ) and vertical ( right ) component velocity solutions
to the layer over half-space problem using the GFM and normal mode methods. The solid lines
are the GFM solutions and the dashed lines are the normal mode solutions. The solutions were

low-pass filtered with a corner frequency of 1.0 Hz.

Figure 17: Same as Figure 16 except anelasticity was included in the simulation. A constant Q of
300 was used for waves in the top layer of the structure, and a constant Q of 1000 was used for

waves in the half-space.

Figure 18: A thin, low-velocity layer model used for a comparison of GFM and normal mode

simulations.

Figure 19: Comparison of horizontal ( left ) and vertical ( right ) velocity component solutions to
the thin, low-velocity layer problem from the GFM and normal mode methods. The solid line is
the GFM soiution, and the dashed line is the normal mode solution. The solutions were low-pass

filtered with a corner frequency of 0.5 Hz.
Figure 20: Layered velocity model of the earth’s crust and upper mantle.

Figure 21: Vertical velocity GFM synthetics computed for an explosion source in ( a ) the layered
earth model of Figure 20 and ( b ) the layered earth model with the addition of random variations




in elastic velocity values about their mean values. The strongest fluctuations were 25 % rms within
the source region.
Figure 22: Basin structure used to generate the seismograms in Figure 23. Light shades indicate

low velocities and dark shades indicate high velocities. The basin and its associated mantle uplift
span a source-receiver range of 70 km to 270 km, and the basin extends to a depth of 10 km.

Figure 23: GFM generated seismograms from an explosive source at a depth of 1 km in the layered,

basin structure of Figure 22.
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Wave Propagation in Laterally Varying Media:
A Mode Expansion Method

Charles Archambeau
Department of Physics
Theoretical and Applied Geophysics Group
University of Colorado
Boulder, CO. 80309

Abstract

An analytical approach, using modes defined on subregions of the medium, has
been developed to model seismic wave propagation in media with vertically and hor-
‘izontally variable elastic and anelastic properties. The approach is also applicable to
acoustic waves in fluid media and electromagnetic wave propagation in laterally vary-
ing media. The restriction on the medium variability is that it can be represented by
step function variations in its properties in both the vertical and horizontal directions.

The method makes use of normal mode expansions of the wave field in parti-
tioned sub-regions of the medium within which the medium is uniform in the lateral
directions. Thus, the medium is partitioned into laterally uniform zones and complete
normal mode solutions are obtained for each horizontally layered zone. In the analyti-
cal development the "zonal eigenvalues and eigenfunctions" are generated by treating
each zone as a layered half space or radially layered sphere, as is appropriate for
medium geometry. The resulting sets of modes are then used as a bases for expan-
sions of Greens functions in the layered subregions. The Greens function expansions
are then used in Greens function surface integral representations that give the displace-
ment fields in each zone. These representations apply at the common boundaries
between the zones where continuity of displacement and traction is required. There-
fore, the integral expressions for the displacements and tractions from adjacent zones
can be equated along their common (vertical) boundaries as required for continuity.
Then introducing eigenfunction expansions for the displacement and traction fields
appearing in the integrals allows the integrations along the boundary surfaces to be
performed. Consequently, boundary continuity equations reduce to algebraic equations
in the unknown coefficients of the zonal eigenfunction expansions for the displacement
field. This reduction to algebraic form allows a "lateral propagator" for the wave field
to be defined when the method is applied to all the zones and vertical boundaries mak-
ing up the medium.

In application this "lateral propagator “ is very similar to the classical “vertical
propagator”, but now performs the function of coupling modes between the various
zones. The theory is exact when the lateral variations are actually discontinuous step
changes in properties. Consequently, when the actual changes can be well approxi-
mated as a sequence of steps, the method should be superior in computational accuracy
and speed to numerical methods.
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Wave Propagation in Laterally Varying Media: A Modal Expansion Method
by

Charles B. Archambeau

Zonal Partitioning and Green’s Function Representations

Consider a two dimensionally varying elastic-anelastic medium, as indicated in Figure 1.
' In each zone Vg4, o= 1,2, - - - M, the medium varies in the vertical direction (z), but is uniform in
the horizontal direction (y or p). The supposition is that the laterally varying medium can be
approximated by a series of step variations in material properties in the same way as is done in

the vertical direction.

In V4 we have for the frequency domain displacement field (¥u at any point r within V:
@)= [ (5 9050 i @) -y g v w)aa, M
-1

where (9G] and (¥gj are the zonal displacement and traction. Greens’ functions appropriate for
the zone or region V,." The vertical boundary surfaces of Vq are £, and Ea_l,'és indicated in
Figure 1. Here we assume no sources inside V, and that the Green’s functions satisfy all inter-
nal boundary conditions on all horizontal layers in V4. (In this case there are no surface
integrals over internal boundaries in (1)). Green’s functions in V, can be written in terms of the

eigenvalues k, and eigenfunctions (@ for this zone as ™

¥ Summation over repeated coordinate indices is used throughout. Coordinate indices will appear &s lower case latin sub-
;cnpts and supecscripts. The summation convention does not apply to any indices appearing in parenthesis.

Throughout this development the “sum” over the eigenvalues ka will be written as a discrete summation but it should
be understood that in an unbounded medium, such as a layered half space, part of the wave number spectrum will be con-
tinuous. In this case the "sum” over ka must be interpreted as a generalized summation involving a regular sum over the
discrete part of the spectrum plus an integration over the continuous part of the wave number spectrum.




Figure [.  Zonal partitioning of a vertically and laterally

varying medium into subregions of uniform
horizontal layering.




, @y (o, ko) @Oyi(r, ko)
() : = J a
ij(r, ro, ©) 41th ; No(ke, ©) (2)

where (@ is the complex conjugate of “; and N, is a normalization constant which may be a
function of frequency ® and the wave number kq. Since the (Py; are eigenfunctions for the
region V, this Green’s function satisfies all boundary conditions along the horizontal boun-

daries in V. (For details see Harvey, 1983.)

Further, since:

0@G(r, ro; ®)

@gi(r; ro; @) = nf® C&n X

where nf® is the surface normal to £, and £,_; and x{* are source coordinate variables, then

. @F, (r,, ko) @yy(r,
(@gi(r; ro; w)=4nn§a £ (Tl;a(kkz), au)f)(r Ka) "

‘Here m is the angular index for cylindrical coordinates, kq the horizontal wave number

corresponding to the modes in V4 and where:

@F(ro, kg) = ClfPa =2 | @yl k)| @
oxp

Because of the horizontal layering in V,, the eigenfunctions (®; and (¥, are defined sec-

tionally, that 1s:

N
(a)wj :{(a)\yj(S)(z) z,_1 Sz2<zg ‘ }1

with (s) the horizontal layer index in V.

For the horizontally layered region V, we have that:

@G} = @G + @G}

(g = RRgf + (P ©)




Here QG; and (PG are the Rayleigh and Love type Green'’s displacement functions (with simi-

lar names for the associated Green’s tractions) and where

i (?W’(rov Rka) (?W(r’ rK )
@Gi(r, ro; ) =41 . R
R) ]( )] m%kq N&R)(ka o)
: (P (ro, ka) QY(Fo ko)
(a)Gx , Fol =4 L Tj\*o L Yj\'o a
O Y v Ty

(6)

with gk, and 1k, representing the Rayleigh and Love type mode eigenvalues. Likewise:

N

Dodie = - ) < @F(r,, rky) Qyi(r, rka)
(legj (r, Fos ) =471 m§kq ; N&R)(ka : CD)

@gi(r, r,; ©) =47
ng( o ) mgka N&L)(ka, (D)

J

— . 4
(?.)\Ifj(rm 1kq) (?.)Wi(ra Kq)

(7

In cylindrical coordinates (p, ¢, z), the eigenfunctions are (see, for example, Harvey, 1981):

;
@Dy(r, rkg) = (@ Dp(z; rky) P(rkap, 9)
+ @ (z; wka) Blskap, )|

(@¥(r, rky) = (PRy(z; ko) Prmlrkap,9)
+ A5 1(z; Rka) Bm(rka P, $)

Py(r.ke) = @Fn(z; ika) Cmkap, ¢)
Q@E(r, 1ka) = T m(z; tkea)Crm(1kap 0)

Here P, B and C are the vector cylindrical harmonics defined as:

Pr(kp, 9) = & Jm(kp)e™®
Bm(kp,d)) = ép 3% + é¢ [%{5—] B% ]m(kp)eim¢

Conlkp, )= |8 | 15| 55 = & gy | Im(k)e™

where

®)

®)

~

(10)




Im(kp) = HN(kp) + HEP (kp)

with J, the cylindrical Bessel function and H{) and H{? the cylindrical Hankel functions.
These vector functions are clearly such that PyBy=PyCri=BnCr =0 and also have the
usual functional orthogonality. (e.g. Stratton 1941, Morse and Feshbach, 1953). Here &,, &, and
&, are the unit vectors in cylindrical coordinates. The van'.dus "stress-displacement” functions
@D, @E_, @R, -+ DT, in (8) are the same as those usually appearing in the ordinary
developments for a laterally homogeneous layered half ‘space -- such as described in Harkrider
(1964); Ben Menahem and Singh (1972), or Harvey (1981). |

Similar representations for the eigenfunctions can be given in cartesian and spherical coor-
dinates. (In the latter case the eigenfunctions ry and Ly are usually termed spheroidal and tor-
sional; and P, B and C become vector spherical harmonics). The choice of cylindrical coordi-
nates implies rotational symmetry, that is that the medium is partitioned into zones Vo which are
cylindrical shells, with Figure 1 depicting a cross section at fixed ¢. If <;anesi-an coordinates are
used, then Figure 1 represents a cross section at constant y, with properties constant in the ty
directions. In the development that immediately follows cylindrical coordinates will be used;
however the cartesian and spherical representations are also appropriate and the development

and results are analogous to those for the cylindrical choice.

“"Forward" and "Backward Propagating" Mode Expansions

In addition to the eigenfunction expansions of the Green’s functions in Vg4, we can also
expand the displacements and tractions, appearing in (1) in terms of eigenfunctions in Vq. In
particular, (Puy(r,) and (¥t(r,) may be expanded in terms of "forward” and "backward" pro-

pagating modes as:




@y;(ro, ©) = @uD(r,, ©) + @uf(r,, ®) |
(@tj(rs, ©) = Ot{(ro, ) + DtA(r,, w) (b

where the superscripts (1) and (2) denote modes propagating in the positive and negative radial

(p) directions. Specifically,

N

) . @ ko)
(a)uj(r°’ ®) = Z [(a)a r(n’) (ka) (a)Wj(l)(ro’ ko) + @q m (Ka) (a)Wj(z)(ro’ ]
m’, kg
\
1 , P . (12)
@t(ry, @) = Y [@a S KO D(ro, k) +@a P (kg) @FO(r,, ka)]
m’ Xq

where

@nyPX(ro,rke) = [(a)Dm'(zo; ko) Prgp) + (Q)Em'(lo; k&)BéP) + (a)Fm’(Zo§ ko) Cr@)} gimé

(13)
@PE)r,, k) = [(a)R lZos k&) PSP + DS 1(zo; k) BSP + T (20 k&) C x%")] eimd
with
PP =& HPkep);p=1,2
L9 5 | im’ .
B{p = té +8& | H{p 14)

P =|é, [—‘k%] -8 aa(k&pJ H{P(kp)

L

The coefficients (¥aq ,(,f ) (ko) are to be determined from boundary conditions at £, and Zq-;;
these conditions bring the continuity of diéplacement and traction on these surfaces. On the
other hand, of course, all the functions (¥D), (VEP), (QFP), @R ) (ASP), and (0T ) are
known functions of the coordinate variables and the intrinsic material properties of the internal
horizontal layers, since they are provided by the usual one-dimensional propagator approach in a

layered half space (e.g.. Harvey, 1981). The explicit forms of the functions are included in the




Appendix 1.
Given that Gj and g} in (1) can be split into Rayleigh and Love type Green’s functions, as
defined in (5)-(9), then it follows that ("‘)uj can also be split into modal sums involving only (Py;

and (Py;. Therefore:

(cx)uj = i(a)uj(p) = i [(cﬁ)uj(p) + (%)uj(P)] (15)
p=1 p=l
where
> Quire @)= L [(ﬁ?a o (k5 Quid + Qam (ko) Dy
p=1 ) m’, Rk& -
(16)
D, L 2,0
Y QuPr,, @)= X [“i’a o (k) @y + @a 0 (ki) Py
p=1 m ,1Kg -
with
(QyPX(r,, rkg) = [(Q)Dm’(zo ; RGP + DE (2, 5 rKy) Br(xp)] eim'¢
a7

(DyP(ro, 1ka) = @Fm(z, ; 1K) CP €™

A similar decomposition applies to the traction (¥t.

It is important to note that the eigenfunctions used to expand the Green’s functions in equa-
tions (2) - (7) are appropriate for the horizontally layered zone in V4 and are themselves normal-

1zed such that:

< @yP(ky), QuP(ke)> = J @y P(kor) DUP(KGrIAV = Bk —ks) O
(19)

<@yP(ky), PyP> = J QP (kar) QuP(kar)dV =blkq —ka)dd"

where (a)ﬁjj denotes the complex conjugate of (My; and the right hand side involves the usual




delta functions. Therefore the normalization factors appearing in the Green’s function expan-
sions are free parameters that may be chosen so as to appropriately normalize the zonal Green'’s
functions in Vg, a=1,2,- - - M.

To obtain the appropriate normalization factors for (YG{ and (PG{ and, in addition, to
express these Green’s functions in forms that are convenient for use with the expanded form for
(@y; in (15)-(16), it is useful to adopt an expansion form for the Green’s functions that is similar
to that for (My; in (15). That is, using both (DD and @y® in the expansion for (@G], we

express the Green’s functions as:

@Gj (r, ro; ®) = QG + @GP

@Gi (r, To; ®) = @GP + @GP (20
where:
@yP(r,, rke) PWEP(r, rko)

(a)Gl P) = 41 J 0 ! a
- K 5 m.ZR:ka RNéa)(ka , @) @D

(a)q,.(p)(r , k) OyPX(r, tkg)

(a)G ) = 4 L ) o L 1
- lﬁp nm% LNéa)(ka , O)

and similarly for (@gi and (Pg}, the Green’s tractions.

Orthogonality and Normalization Relations for Zonal Eigenfunctions

We can use (15)-(16) in (1) and also substitute (20)-(21) into this representation integral.
Since the representation given by (1) should be of the form of the expansion in (15), we should
obtain by proper choice of the normalization factors, gN§® and (Nf®, exactly the expansion
given in (15) in terms of forward and backward propagating modes. In particular, from (1) we

have:

@y (r, ©) = Qu; (r, ©) + Py (r, ®) (22)




with

@uy(r, w) = ZQ‘L [Rtj (@G - ry; (",?gji] da, ;reVq
+iq-1

: . [ (23)
@yy(r, w) = &L Ly PGi-wy Pgflda, ;reVe
tia-1

|

|

|

1 |

Introducing the explicit eigenfunction expansions from (15)-(16) and (20)-(21), we get:

@ur, @) = i:l(ﬁg)u}i’)(r, ©) (24)
p=

@y P - @a® Kk’ 1
lgulp (rv (D) Z l?am (R Cl) ronke {RNéa) (ka s (D)}

m’.Rk[,

{< (?\Fj(P)(Rk&), (O[L?Wj(l)(Rka)>a. a-1

- <QuP(rky), QU (k) s, a.l}%)wf”(r, rK) +{< @QEP(rks), QUPRKD)>q, a-1

= <QuP (k). DED (ko) a-l} QuD (v, k) (25)
Here terms of the form:

<yi(ke), 1k a, et = <Yj(kd), Aj(Ka)>a + <Wj(Ka), 2j(ked > a-1

are introduced, where the inner product is defined over the surface Ly (or Zg-1) as:
<w(ka). 7i(ka>, = lw,-(ro, Ka2i(For Ka)dZg

with summation over the repeated coordinate index (j) implied. An exactly analogous result

holds for vuy; with the suffix "R" replaced by "L" in (24) and (25).

Comparing (25) with the equivalent expressions in (15) - (16), it is clear that the inner pro-
ducts appearing in (25) must reduce to delta functions over the angular index m and the mode

eigenvalues ko In particular, the following orthogonality conditions apply*:

*Where it is obvious from context, the R and L identifying subscripts on the wave numbers Rka and Lka will be
enpncessed 1n order 1~ raduce clutter in the equations




<@WP(k) QuP(ka)>p - < @ufP(ka), QP (ka)>p

= L[ [‘W@(k&ro) - QP (kgro) — Ry (karo) - (?‘FP’(karo)] da, (26)

=ng [Pr‘rP’(k;ps) - PP (kapp) + BP(kipp) - BP(kopp) ] Bz O
with =0, a.— 1 and p = 1,2 and where ng = 2npg. (Here pg is the constant value of the radial
coordinate on the surface Zg.) In addition,

< @Y (kg) @y D(ke) >p -< @yP(kg), (o‘tg\yj(q)(ka)>5 =
(27)

i [(?2‘1',-<P>(k;ro) - QYD(karo) = QU (karo) - <?2‘¥@<karo)] da,=0

for B=a, a— 1 and p #q. Formally identical relations hold for the eigenfunctions (Py® and
are obtained by replacing the suffix "R" by "L" in (26) and (27). Here we observe that the for-
ward and backward propagating modes are completely orthogonal sets. These conditions are
equivalent to those obtained by Herrera (1964) and McGarr and Alsop (1967) and were used by
Kennett (1983) in his development of a formalism for wave propagation in laterally varying

media. In more explicit form, equations (26) and (27) are equivalent to:
[@Rm(zo + k&) @Din(z0 1 ka) = @Dm(Zo ; ko) @Rz : ka>] dzo = B
ﬂ(ws,,,(zo k&) DEq(2 : ko) = @Eq(2o ; k&) @8(zo ; ka]_dzo =B

where the subscript "R" on the P-SV wave number has also been suppressed in these expres-

sions. For the SH modes the analogous orihogonality relation is easily seen to be:

£[<G>Tm(zo + ka) @En(zo : ko) = Fin(2o 1 k) VT2 ka)] dzo =By




where the wave numbers and k, and k. now refer to the SH wave number set (k,. The "vertical
eigenfunctions" in V are those defined in (13) and are simple expontials in z,. (See Harvey,

1981.) Here also we consider the k4 to be discrete infinite sets, so that orthogonality is expressed

by the Kronecker delta 6kkg

Using these orthogonality relations in (25) gives:

k&’&g}x’ - =
Puir o) = T Ran () 2 RT%&‘—@) [na{P,waq;pa)-P,s,l><kapa>+8r<n'~><kapa>-B,w(kapa)}

+ na-l{Pr}f (kaPa-1) - P(Kopo-1) + BPKapai) - E&D(kapa_l)}

So

(Qu(r; ®) = Z:;,(?a O (ka) Dy(r, ko)

provided we take:

RN (@ = lina {P,ﬁ}) (kaPo) * PP (Kapo) + B (Kop o) - ﬁ&l’(kapa)}
(28)

+ na.l{P&”(kapa-l) P (Kapa-1) + B (Kepa-1) B (Kapa-1) H
Similarly,
rU(r, @) = n?ik‘,q @a 2 (ka) QyfO(r k)
provided

RN{a) =1 Ng {Pg)(kapa) ’ T)rg'lz)(kapa) + Blgnz)(kapa) ’ -B\Q)(kapa) }

(29)




+ na—l{Pg)(kapa—l) : _lir(r?)(kapa-l) + Br(nz)(kapa-—l) ’ _Bm(z)(kapa—l)H

The results for (Pu are analogous and the normalization factors are:

LNy (@ = [nacw(kapa)-é.se)(kapa * na-xcw(kapa.lm)(kapa-l)] (30)
LN2(a) = [nacrgxz)(kapa) ) Erg)(kapa) + na—lcl&z)(kapa—l)Crg)(kapa-l)] (31)

Thus, the form of the displacement field in any one of the zones V4 is given by

@ur,0)= T, |92 (k) QU ko) + 92D (k) QU o)

m,rKa

p» [(@aé}’ (cka) QuiV(r, tke) + D (ke Dy, u@] reVe (D)
My Ka

which is (merely) a sum of P-SV modes propagating in the forward and backward horizontal
directions, plus a similar sum of SH modes. Further, the displacement field in V4 is connected to
its values on the boundary surfaces L, and E,., by the representations in (23), with the Greens
functions given by the eigenfunction expansions of (20) - (21) and with the normalizations
specified by (28) - (31). Use of these latter representations provide the means of determining the
coefficients (Ra r(,f’ ) and (@a éf ) in (32), and thereby an explicit expression of the displacement

field in V4 in terms of the modes of this hdrizontally layered region. As will be shown, the

coefficients between all the zones V4, a = 1,2, - - - , M, are linked by a propagator formalism.

Zonal Boundary Conditions, Projections and Lateral Propagators

Continuity conditions expressing conservation of momentum, mass and energy apply
throughout the medium, however complex the intrinsic material properties. In particular such

conditions apply along the control surfaces L, separating the zones of uniform lateral properties




in Figure 1. In the case of a solid medium, with welded contacts at all layer boundaries, the con-

tinuity conditions along the surface I, are:

(a)uj (a+1)uj
@ | =|@mng| J=L23 C - (33)
1 a Ha
where the subscript o on the matrix brackets is used to indicate evaluation on the vertical boun-

- dary L, between the zones Vg and V.

The displacements and tractions in (33) can be expressed in terms of the eigenfunction
expansion of (32). However, since the P-SV and SH modes are decoupled in Vg and Vg 4 g, then

(33) can also be expressed by the decoupled set of relations:

(‘,’?W(P)(Rka) (a+1)RW.(P)(Rk +1)
@ALP ! = (@t A (P) T\ a i
E R% pgl ?Aér (rko) (%)\Pj(p)(Rk ) . E E i atlr ASP (Rka+1) (a+1)R\{_rj(p)(Rka+l) . 3 ) 1,2

m gkg. p=1

Lka p=1 m jkea p=l

(g Ap) (a+1); s (P)
L L 1| QAP @"{{;f&j AR2R> X @D AP kar) (aﬂ)’;\"ﬁj&ﬁ‘:ﬁ) =3
' (34b)
where the expansions in P-SV and SH moves have been substituted for u; and t; on both sides of
(33). A similar set of boundary equations apply to the other vertical boundary of V4, on the sur-
face Ly -1, in Figure 1. (In this case the matrices are evaluated on L4 _ ; so the m?itn'x indices in
(34) chaﬁge to (a — 1) throughout, while on the right side of (34) all the eigenvalue and eigen-
function indices change from (o + 1) to (o = 1).) |
We can extract expressions for individual mode coefficients (YA’ and ("L‘)A,(TP), appropri-
ate to the zone V, in terms of the mode coefficients in the zone V., | by taking integral inner

products ("projections") between the displacement and traction eigenfunctions on both sides of




m

Y Y @APk,
ka p=1

(34). Then we can use the (P-SV) orthogonality relations in (26) - (27), along with comparable
orthogonal relations for SH modes. Specifically, using inner product bracket notation as before
in equation (25) and taking the inner products between displacement and traction eigenfunctions

on both sides of (34), we have:

(a)q;(p)(k ), (a)\y(s)(k&n))>

(a+D A (P)(k
(a)‘Pj(P)(ka) , (a)‘Vj(s)(k&“))>a - pg:l AfP(Ka1)

(35)

where indices R or L have been suppressed but are implied, with appropriate use depending on
whether j = 1, 2 or j = 3, as indicated by (342) and (34b). (That is, this equation applies to either
(34a) or (34b)). For specificity, one uses P-SV eigenfunctions and eigenvalues and a subscripf
"R" when considering component equations with j = 1, 2 and uses SH eigenfunctions and eigen-
values with ;ubscript “L" when considering the j = 3 component equation.) Here k{ dénotes the

specific nt eigenvalue of one particular mode with angular index m’.

Now we can subtract the upper matrix equation in (35) from the lower one and then make
use of the orthogonality relations for P-SV modes in (26) - (27), and the obvious similar pair for

the SH modes, to obtain:

@APKE) =

2<a+l>A,<,P><ka+1>{<<a+1>w<w(ka+1> @Ok > =

N(a) Pl

<L@DYPkgy1) <a>w,-<s><kc&">)>a} 15=1,2 (36)

where we have equated the sums over m, on each side of (35), term by term. This equaton
again applies to either P-SV or SH modes; however, for P-SV modes j = 1, 2 and for SH modes,
then j = 3. Therefore in (36) the implied summation over the coordinate index is over j = 1 and

2. for the P-SV case, and for SH modes only the one term, for which j = 3, occurs. The free

<(a+1>qu(P)(ka +1) - (c})\{tj(s)(1< >
@D P kgp1) o Oy O (kM)




index (s) denotes the forward and backward horizontally propagating modes, so that (36)
expresses a relationship for both mode types. The factor N{® is the normalization "constant”
appropriate for the different mode types. These factors are given in (28) - (29), for the forward

and backward propagating P-SV modes, and in (30) - (31) for the SH modes.

It can be seen from (36) that a particular mode in Vg, at a particular eigenvalue (or wave
number), will be "excited" by all the forward and backward propagating modes in Vg, in the
manner described by the expression on the right side in (36). Thus, all the modes 1n Va4, at all
wave numbers, will contribute to the excitation of any one mode in Vg (at a particular wave
number) in proportion to the sum of the mode coefficients, (**DAP)(kq,4), weighted by the inner
product factors given by the bracket term on the right side of (36). Thus the weight factors in

(36) will be called coupling coefficients.

Considering the kq,; eigenvalues as a discrete (infinite) set {k&,}, as was implied for k,

' by the use of k{M, then we can define the discrete coupling coefficients as

CE (0t 100 = b [<<ODYPUR) L OB - <DL, AR >]

N, @
€Y
and (36) becomes:
@g (k&“’)=¥ Y, Cieo (a+l ) @Da® kP :s=1.2 (38)
p=1

The coupling coefﬁcieﬁts can be expressed in more detail when the specific functional
forms of the eigenfunctions appearing in the inner products are used in (37). In this case we can
use the orthogonality of the vector cylinderical harmonics to reduce the coupling factors to sim-
ple integralsb over the vertical (z) coordinate on the boundaﬁes of each zone V4. Specifically,

from (37) for the P-SV case, using the eigenfunction expressions given earlier in (13) - (14), one




has:

P (@l 0= % {<<G+I>Dl,<°°R,,>—<<“+1>R1,<°°Dn> }Péf)(k&mpa)-f’éP(k&")pa)
RiNg
+ (<D, (@05, > — (DS | (“’En>}35?’(k$‘lxpa)'ﬁéf)(k&")r)a)} (39)

where ng = 21p,, With p, denoting the value of the radial coordinate on the surface L. Further
the various inner products involve the "vertical eigenfunctions” defined in (13) and (17); where

these inner products have explicit forms of the type:

S O = [0l Rl (392)

with similar expressions for the other products in (39). If these products are compared to those
in (26) and (27) - or more directly to the orthogonality relations involving the vertical eigenfunc-
tions given by the equations following equation (27) - it can be seen that the inner products in
(39) reduce to delta functions if the eigenfunctions in the zones V4 and Vg, are the same; that
is, if (@+¥DD = @D, , (DR = (@R etc. This, of course, is as it must be, since only when the

physical properties in the two zones are identical will the eigenfunctions be the same and it then

-follows that the coupling matrix must be diagonal - that is that the boundaxy between the two

zones produces no cross mode excitation and is transparent. We see, therefore, that the analyti-

cal expression in (39) for the coupling does indeed have this required property.

The normalization factor for C {P* is the ratio kNg(® / n, which can be redefined as rNg(®,

where from the previous expressions for kN, in (28) and (29), this constant has the form:

RN = {Pé&)&&mpa)-f’g)(k&“)pa) + BOKPPo) BOKD0o)

(40)
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In an exactly analogous fashion the coupling coefficients for the SH modes are found to be:

(CP9 (o413 0= [<<“+‘>F1 ,@T,> — <E*UT;, @F,>| CPKPipa) CPKEp,)
S

(41)

where the inner products are again of the simple form:
(DE,, @Ty> = [(DFn(zo ; k)@ Tn(zo : k) dze (412)
Further, we can again define a new normalization factor LN(® = {N{(® / n, which has the form:

tN@ = | CPK PP ) CHRKPP ) + [Pp“;‘]Céf’ﬂcé“’pa-x)-‘—léf’(k&")pa-l) (42)

The computations involved in determining these coefficients are straightforward, since the
cylinderical harmonics are tabulated and the integrals over the vertical coordinate z, involve
simple integrals of exponentials that can be evaluated analytically, in closed form, for the gen-

eral case.

Since (38) constitutes a set of two equations for s = 1 and s = 2, corresponding to forward
and backward propagating modes and since the sums on the right can clearly be expressed as a

product of matrices, it is natural to write the results in matrix form. Therefore we define:

4 N\

@ag (k§d)
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[@a ,Ss)] =| . ;fors =1and 2 (43a)

@a ) (k)

\ J

and a similar column matrix of length (L) denoted [(**@a fp)], where the angular index m has

been suppressed in writing the mode excitation matrices. Further, we can define coupling




matrices by:

4 3
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for each s and p value, where s = 1,2 and p = 1,2. With these definitions one can write the sys-

tem of equations implied by (38) in the form:

1
[@aM| |[CEPICEDT {|ievaM]

[@a @] = |[C 821 (€221 |teva @] (44)

where the forward and backward propagating mode excitation coefficients are displayed expli-
citly. In defining the [C {P®] matrices, and in writing the matrix result in (44), the "o indices”
have been suppressed. However, when confusion can arise they should be written as
[C®® (o +1; )], etc., since the a indices change when the matrix refers to a boundary other
than .. (eg. Between the zones V,-; and Vg, on the surface Z,-;, the coupling matrix 1s

expressed as [C 1,9 (a; a—1)]).

Obviously the coupling matrices are square only if L = N, that is if we use as many modes
in Vg as in Vg4 to represent the propagating waves. This choice will be adhered to, from this

point forward, although it is not a necessary condition.

It is evident that the partiioned matrices can be written in unpartitioned form as well,
where, with L = N, the mode coefficient matrices are of dimension (2N X 1) and the coupling
matrix is square and of dimension (2N x 2N). Thus, we can also define modé coefficient
matrices consisting of the (ordere,d)- mode coefficients for the forward and backward propagating

modes in the zones V, and V44 as (say):




(1)]

[(a)m n} = E:;ZZZ)]

) (45a)
(g

1 =
[(a+ )ml] = [(a+l)al(2)]

\

and, similarly, we can define what can appropriately be called a horizontal propagator matrix:

[H n(a+1 ;a)] = [C‘(“l'l)] [Clg'l)] | (45b)
o) oo

Now the equation (44) can be written in the more compact form:
[@m,] = [Has1: ) [corm| 6)
and expresses the required conditions between the mode coefficients in neighboring zones.
If we take successive values of a, with a ranging from 1 to M-1 say, then we get
[Wmg] = [Hip(2; DIPm)]
[@m ] = [H (3 : )][®m)]
[M-D77,] = (H oM s M=DIm]

Clearly, by noting in these equations that the indices | and n are just dummy indices providing a

numbering system for the eigenvalues, then
o, | = Hu2: 0| [HaG 2] -+ [H i M) 0om|

by successive substitutions. Consequently, we can write, forany f 2 o + 1:

[‘“’mn] ={ Iﬁl [H m(q;q—l)]} [(f’)m 1]_ o 4(47)

q=0o+1




This is a propagator equation that connects the mode coefficients in any zone Vg with those in
any other zone V,. Incase f =a + 1 the equation (47) reduces to equation (46), which connects

the coefficients in any two neighboring zones. Since the coupling coefficients composing [Hm}

can be computed from the simple eigenfunction inﬁer products at the zone interfaces, this equa-
tion provides the means of computing mode coefficients that produce displacements and trac-
tions satisfying all the boundary conditions along the vertical boundaries of the mediqu Since
the eigenfunctions used already satisfy the boundary conditions along the horizontal boundaries
in each zone, then by use of the horizontal propagator relation all the‘ boundary conditions in the

laterally and vertically "layered" medium being considered can be satisfied.

Summary and Conclusions

The basic method described here makes use of normal mode expansions of the wave field
in each partitioned sub-region of the medium within which the medium is uniform in the lateral
directions. Thus the medium is partitioned into laterally uniform zones and complete normal
mode solutions are obtained fro each horizontally layered zone. In the analytical development
the "zonal eigenvalues and eigenfunctions” are generated by treating each zone as a layered half
space or radially layered sphere, as ia appropriate for the medium geometry. The resulting set of
modes are then used as bases for expansions of the wave fields in the layered subregions. The
mode expansions defined on the zones are then "connected" by matching (equating) the exact
Green’s function representations of the wave fields in each zone at the common boundaries
between the zones where continuity of displacement and traction is required. This results in the
definition of a "lateral propagator" of the wave field when applied to all the zones making up the

entire medium and is, in application, very similar to the classical "vertical propagator” method.




The method is exact when the lateral variations are actually discontinuous step changes in pro-
perties. When the actual changes can be approximated as a sequence of step the method should

be superior in computational accuracy and speed to numerical methods.

In implementations of this method it is only necessary to compute the "zonal" normal
modes once, and subsequently these zonal mode solutions can be combined in a varie& of ways,
using the lateral propagator equation, to produce theoretically predicted wave fields in mariy dif-
. ferent laterally varying structures wintout the necessity of a complete recomputation of wave
fields in each new structure. Further, the propagators are analytically defined so that manipula-
tions related to inversion and perturbation calculations can be considered. For these reasons, and
because of its inherent high accuracy, this method should prove useful in modeling seismic wave
fields in complex media and in inversion studies. In the present study the method is developed
in detail for twd dimensionally variable media, using cylindrical coordinates and wave functions.
However, analogous results in rectangular and spherical coordinates may be obtained using the

same procudure and are appropriate for media with variability in all three spatial dimensions.
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